A Turing machine is an abstract machine that manipulates symbols on a strip of tape according to a table of rules; to be more exact, it is a mathematical model of computation that defines such a device. Despite the model's simplicity, given any computer algorithm, a Turing machine can be constructed that is capable of simulating that algorithm's logic.

Property Value
dbo:abstract
  • A Turing machine is an abstract machine that manipulates symbols on a strip of tape according to a table of rules; to be more exact, it is a mathematical model of computation that defines such a device. Despite the model's simplicity, given any computer algorithm, a Turing machine can be constructed that is capable of simulating that algorithm's logic. The machine operates on an infinite memory tape divided into cells. The machine positions its head over a cell and "reads" (scans) the symbol there. Then as per the symbol and its present place in a finite table of user-specified instructions the machine (i) writes a symbol (e.g. a digit or a letter from a finite alphabet) in the cell (some models allowing symbol erasure and/or no writing), then (ii) either moves the tape one cell left or right (some models allow no motion, some models move the head), then (iii) (as determined by the observed symbol and the machine's place in the table) either proceeds to a subsequent instruction or halts the computation. The Turing machine was invented in 1936 by Alan Turing, who called it an a-machine (automatic machine). With this model Turing was able to answer two questions in the negative: (1) Does a machine exist that can determine whether any arbitrary machine on its tape is "circular" (e.g. freezes, or fails to continue its computational task); similarly, (2) does a machine exist that can determine whether any arbitrary machine on its tape ever prints a given symbol. Thus by providing a mathematical description of a very simple device capable of arbitrary computations, he was able to prove properties of computation in general - and in particular, the uncomputability of the Hilbert Entscheidungsproblem ("decision problem"). Thus, Turing machines prove fundamental limitations on the power of mechanical computation. While they can express arbitrary computations, their minimalistic design makes them unsuitable for computation in practice: real-world computers are based on different designs that, unlike Turing machines, use random-access memory. Turing completeness is the ability for a system of instructions to simulate a Turing machine. A programming language that is Turing complete is theoretically capable of expressing all tasks accomplishable by computers; nearly all programming languages are Turing complete if the limitations of finite memory are ignored. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2016) آلة تورنج هي نموذج نظري بسيط يحاكي طريقة عمل الحاسوب. سميت بهذا الاسم نسبة لعالم الرياضيات الإنجليزي الآن تورنج الذي أوجد هذا النموذج سنة 1936م. هذا النموذج يعطي تعريفا رياضيا دقيقا للمصطلح خوارزم Algorithm, أهمية هذا النموذج تكمن في بساطته مقارنة بجهاز الحاسوب المعقد وبالرغم من ذلك فهو قادر على تنفيذ كل خوارزمية قابلة للتنفيذ بواسطة أي حاسوب متطور. لذلك يمكن معرفة إذا كانت عملية معينة قابلة للتنفيذ بواسطة الحاسوب أم لا عن طريق فحصها بواسطة آلة تورنج. من هنا فإن لآلة تورنج استعمال واسع في مجال دراسة قدرة الحاسوب والعمليات التي يمكنه أو لا يمكنه تنفيذها، وهو ما يسمى علم قابلية الحساب.يعتبر نموذج آلة التورينغ نموذج رياضياً بسيطاً للحاسوب وينمذج المقدرة الحسابية لحاسوب ذي وظائف عمومية وهو أيضاً من أهم اللغات الصورية إذ يقبل أوسع مجموعة منها وهي اللغات القابلة للعد عودياً والتي يمكن توليدها بنماذج قواعدية من النوع صفر. يتألف النموذج الأساسي لآلة التورينغ من تحكم منته وشريط دخل منته من جهة واحدة هي جهة اليسار وغير منته من جهة اليمين ومقسم إلى عدة خلايا كل منها يحمل رمزاً واحداً من مجموعة منتهية تسمى "رموز الشريط" ورأس يسمى رأس القراءة والكتابة الذي يمر في كل مرة على خلية واحدة من الشريط. تحتوي الخلايا الn اليسارية من شريط الدخل (n عدد منته)في الحالة الابتدائية رموز الدخلفي حين تحتوي الخلايا المتبقة من الشريط رمزاً فارغاً. تقوم آلة التورينغ في الحركة الواحدة واعتماداً على رمز الدخل المقروء من شريط الدخل وحالة التحكم المنتهي بالعمليات التالية: * تغيير حالة التحكم المنتهي. * كتابة رمز شريط في الخلية المقروءة. * التحرك خلية واحدة إلى اليسار أو إلى اليمين او عدم التحرك بتاتا . (ar)
  • Eine Turingmaschine ist ein wichtiges Rechnermodell der Theoretischen Informatik. Eine Turingmaschine modelliert die Arbeitsweise eines Computers auf besonders einfache und mathematisch gut zu analysierende Weise. Sie ist benannt nach dem Mathematiker Alan Turing, der sie 1936 einführte. Turingmaschinen machen die Begriffe des Algorithmus und der Berechenbarkeit mathematisch fassbar, das heißt, sie formalisieren diese Begriffe. Im Gegensatz zu einem realen Computer ist eine Turingmaschine damit ein mathematisches Objekt und kann mit mathematischen Methoden untersucht werden. Eine Turingmaschine repräsentiert einen Algorithmus bzw. ein Programm. Eine Berechnung besteht dabei aus schrittweisen Manipulationen von Symbolen bzw. Zeichen, die nach bestimmten Regeln auf ein Speicherband geschrieben und auch von dort gelesen werden. Ketten dieser Symbole können verschieden interpretiert werden, unter anderem als Zahlen. Damit beschreibt eine Turingmaschine eine Funktion, welche Zeichenketten, die anfangs auf dem Band stehen, auf Zeichenketten, die nach „Bearbeitung“ durch die Maschine auf dem Band stehen, abbildet. Eine Funktion, die anhand einer Turingmaschine berechnet werden kann, wird Turing-berechenbar oder auch einfach berechenbar genannt. Turingmaschinen spielen auch eine bedeutende Rolle bei der Akzeptanz von Formalen Sprachen.So entsprechen die Sprachen die von Turingmaschinen akzeptiert werden den mit Typ-0-Grammatiken definierbaren Sprachen. (de)
  • Una máquina de Turing es un dispositivo que manipula símbolos sobre una tira de cinta de acuerdo a una tabla de reglas. A pesar de su simplicidad, una máquina de Turing puede ser adaptada para simular la lógica de cualquier algoritmo de computador y es particularmente útil en la explicación de las funciones de una CPU dentro de un computador. Originalmente fue definida por el matemático inglés Alan Turing como una «máquina automática» en 1936, en la revista Proceedings of the London Mathematical Society, La máquina de Turing no está diseñada como una tecnología de computación práctica, sino como un dispositivo hipotético que representa una máquina de computación. Las máquinas de Turing ayudan a los científicos a entender los límites del cálculo mecánico. Turing dio una definición sucinta del experimento en su ensayo de 1948, «Máquinas inteligentes». Refiriéndose a su publicación de 1936, Turing escribió que la máquina de Turing, aquí llamada una máquina de computación lógica, consistía en: ... una ilimitada capacidad de memoria obtenida en la forma de una cinta infinita marcada con cuadrados, en cada uno de los cuales podría imprimirse un símbolo. En cualquier momento hay un símbolo en la máquina; llamado el símbolo leído. La máquina puede alterar el símbolo leído y su comportamiento está en parte determinado por ese símbolo, pero los símbolos en otros lugares de la cinta no afectan el comportamiento de la máquina. Sin embargo, la cinta se puede mover hacia adelante y hacia atrás a través de la máquina, siendo esto una de las operaciones elementales de la máquina. Por lo tanto cualquier símbolo en la cinta puede tener finalmente una oportunidad. Una máquina de Turing que es capaz de simular cualquier otra máquina de Turing es llamada una máquina universal de Turing (UTM, o simplemente una máquina universal). Una definición más matemáticamente orientada, con una similar naturaleza "universal", fue presentada por Alonzo Church, cuyo trabajo sobre el cálculo lambda se entrelaza con el de Turing en una teoría formal de la computación conocida como la tesis de Church-Turing. La tesis señala que las máquinas de Turing capturan, de hecho, la noción informal de un método eficaz en la lógica y las matemáticas y proporcionan una definición precisa de un algoritmo o 'procedimiento mecánico'. Estudiando sus propiedades abstractas, la máquina de Turing produce muchas perspectivas en las ciencias de la computación y en la teoría de la complejidad. (es)
  • En informatique théorique, une machine de Turing est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tel un ordinateur et sa mémoire. Ce modèle a été imaginé par Alan Turing en 1936, en vue de donner une définition précise au concept d’algorithme ou de « procédure mécanique ».Il est toujours largement utilisé en informatique théorique, en particulier dans les domaines de la complexité algorithmique et de la calculabilité. La thèse de Church postule que tout problème de calcul fondé sur une procédure algorithmique peut être résolu par une machine de Turing. Cette thèse n'est pas un énoncé mathématique, puisqu'elle ne suppose pas une définition précise des procédures algorithmiques. En revanche, il est possible de définir une notion de « système acceptable de programmation » et de démontrer que le pouvoir de tels systèmes est équivalent à celui des machines de Turing (Turing-complet). À l'origine, le concept de machine de Turing, inventé avant l'ordinateur, était censé représenter une personne virtuelle exécutant une procédure bien définie, en changeant le contenu des cases d'un tableau infini, en choisissant ce contenu parmi un ensemble fini de symboles. D'autre part, la personne doit mémoriser un état particulier parmi un ensemble fini d'états. La procédure est formulée en termes d'étapes élémentaires du type : « si vous êtes dans l'état 42 et que le symbole contenu sur la case que vous regardez est '0', alors remplacer ce symbole par un '1', passer dans l'état 17, et regarder maintenant la case adjacente à droite ». (fr)
  • In informatica una macchina di Turing (o più brevemente MdT) è una macchina ideale che manipola i dati contenuti su un nastro di lunghezza potenzialmente infinita, secondo un insieme prefissato di regole ben definite. In altre parole, è un modello astratto che definisce una macchina in grado di eseguire algoritmi e dotata di un nastro potenzialmente infinito su cui può leggere e/o scrivere dei simboli. È un potente strumento teorico che viene largamente usato nella teoria della calcolabilità e nello studio della complessità degli algoritmi, in quanto è di notevole aiuto agli studiosi nel comprendere i limiti del calcolo meccanico. La sua importanza è tale che oggi, per definire in modo formalmente preciso la nozione di algoritmo, si tende a ricondurlo alle elaborazioni effettuabili con macchine di Turing. La MdT come modello di calcolo è stata introdotta nel 1936 da Alan Turing per dare risposta all'Entscheidungsproblem (problema di decisione) proposto da Hilbert nel suo programma di fondazione formalista della matematica. (it)
  • チューリングマシン (英: Turing Machine) は計算模型のひとつで、計算機を数学的に議論するための単純化・理想化された仮想機械である。 (ja)
  • In de informatica is de turingmachine een model van berekening en berekenbaarheid, ontwikkeld door de wiskundige Alan M. Turing in zijn beroemde artikel "On computable numbers, with an application to the Entscheidungsproblem" uit 1936-37. De turingmachine is een uiterst eenvoudig mechanisme dat symbolen manipuleert en ondanks deze eenvoud kan men hiermee de logica van elke mogelijke computer simuleren. Hoewel technisch realiseerbaar (zo lang we willekeurige hoeveelheden band kunnen aanleveren) zijn deze machines niet bedoeld voor praktische computertechnologie, maar als een gedachte-experiment rond de limieten van mechanische berekeningen; ze worden dus niet echt gebouwd. (nl)
  • Maszyna Turinga – stworzony przez Alana Turinga abstrakcyjny model komputera służącego do wykonywania algorytmów, składającego się z nieskończenie długiej taśmy podzielonej na pola w których zapisuje się dane. Taśma może być nieskończona jednostronnie lub obustronnie. Każde pole może znajdować się w jednym z N stanów. Maszyna zawsze jest ustawiona nad jednym z pól i znajduje się w jednym z M stanów. Zależnie od kombinacji stanu maszyny i pola maszyna zapisuje nową wartość w polu, zmienia stan, a następnie może przesunąć się o jedno pole w prawo lub w lewo. Taka operacja nazywana jest rozkazem. Maszyna Turinga jest sterowana listą zawierającą dowolną liczbę takich rozkazów. Liczby N i M mogą być dowolne, byle skończone. Czasem dopuszcza się też stan M+1, który oznacza zakończenie pracy maszyny. Lista rozkazów dla maszyny Turinga może być traktowana jako jej program. (pl)
  • A Máquina de Turing é um dispositivo teórico conhecido como máquina universal, que foi concebido pelo matemático britânico Alan Turing (1912-1954), muitos anos antes de existirem os modernos computadores digitais (o artigo de referência foi publicado em 1936).Num sentido preciso, é um modelo abstrato de um computador, que se restringe apenas aos aspectos lógicos do seu funcionamento (memória, estados e transições) e não à sua implementação física. Numa máquina de Turing pode-se modelar qualquer computador digital. Turing também se envolveu na construção de máquinas físicas para quebrar os códigos secretos das comunicações alemãs durante a Segunda Guerra Mundial, tendo utilizado alguns dos conceitos teóricos desenvolvidos para o seu modelo de computador universal. (pt)
  • Маши́на Тью́ринга (МТ) — абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма. Машина Тьюринга является расширением конечного автомата и, согласно тезису Чёрча — Тьюринга, способна имитировать все исполнители (с помощью задания правил перехода), каким-либо образом реализующие процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен. (ru)
  • 图灵机(英语:Turing machine),又称确定型图灵机,是英国数学家艾倫·图灵于1936年提出的一种抽象计算模型,其更抽象的意义为一种数学逻辑机,可以看作等价于任何有限逻辑数学过程的终极强大逻辑机器。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 30403 (xsd:integer)
dbo:wikiPageRevisionID
  • 740893405 (xsd:integer)
dbp:id
  • p/t094460
dbp:title
  • Turing machine
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • チューリングマシン (英: Turing Machine) は計算模型のひとつで、計算機を数学的に議論するための単純化・理想化された仮想機械である。 (ja)
  • Маши́на Тью́ринга (МТ) — абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма. Машина Тьюринга является расширением конечного автомата и, согласно тезису Чёрча — Тьюринга, способна имитировать все исполнители (с помощью задания правил перехода), каким-либо образом реализующие процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен. (ru)
  • 图灵机(英语:Turing machine),又称确定型图灵机,是英国数学家艾倫·图灵于1936年提出的一种抽象计算模型,其更抽象的意义为一种数学逻辑机,可以看作等价于任何有限逻辑数学过程的终极强大逻辑机器。 (zh)
  • A Turing machine is an abstract machine that manipulates symbols on a strip of tape according to a table of rules; to be more exact, it is a mathematical model of computation that defines such a device. Despite the model's simplicity, given any computer algorithm, a Turing machine can be constructed that is capable of simulating that algorithm's logic. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2016) آلة تورنج هي نموذج نظري بسيط يحاكي طريقة عمل الحاسوب. سميت بهذا الاسم نسبة لعالم الرياضيات الإنجليزي الآن تورنج الذي أوجد هذا النموذج سنة 1936م. هذا النموذج يعطي تعريفا رياضيا دقيقا للمصطلح خوارزم Algorithm, أهمية هذا النموذج تكمن في بساطته مقارنة بجهاز الحاسوب المعقد وبالرغم من ذلك فهو قادر على تنفيذ كل خوارزمية قابلة للتنفيذ بواسطة أي حاسوب متطور. لذلك يمكن معرفة إذا كانت عملية معينة قابلة للتنفيذ بواسطة الحاسوب أم لا عن طريق فحصها بواسطة آلة تورنج. من هنا فإن لآلة تورنج استعمال واسع في مجال دراسة قدرة الحاسوب والعمليات التي يمكنه أو لا يمكنه تنفيذها، وهو ما يسمى علم قابلية الحساب.يعتبر نموذج آلة التورينغ نموذج رياضياً بسيطاً للحاسوب وينمذج المقدرة الحسابية لح (ar)
  • Eine Turingmaschine ist ein wichtiges Rechnermodell der Theoretischen Informatik. Eine Turingmaschine modelliert die Arbeitsweise eines Computers auf besonders einfache und mathematisch gut zu analysierende Weise. Sie ist benannt nach dem Mathematiker Alan Turing, der sie 1936 einführte. Turingmaschinen machen die Begriffe des Algorithmus und der Berechenbarkeit mathematisch fassbar, das heißt, sie formalisieren diese Begriffe. Im Gegensatz zu einem realen Computer ist eine Turingmaschine damit ein mathematisches Objekt und kann mit mathematischen Methoden untersucht werden. (de)
  • Una máquina de Turing es un dispositivo que manipula símbolos sobre una tira de cinta de acuerdo a una tabla de reglas. A pesar de su simplicidad, una máquina de Turing puede ser adaptada para simular la lógica de cualquier algoritmo de computador y es particularmente útil en la explicación de las funciones de una CPU dentro de un computador. Turing dio una definición sucinta del experimento en su ensayo de 1948, «Máquinas inteligentes». Refiriéndose a su publicación de 1936, Turing escribió que la máquina de Turing, aquí llamada una máquina de computación lógica, consistía en: (es)
  • En informatique théorique, une machine de Turing est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tel un ordinateur et sa mémoire. Ce modèle a été imaginé par Alan Turing en 1936, en vue de donner une définition précise au concept d’algorithme ou de « procédure mécanique ».Il est toujours largement utilisé en informatique théorique, en particulier dans les domaines de la complexité algorithmique et de la calculabilité. (fr)
  • In informatica una macchina di Turing (o più brevemente MdT) è una macchina ideale che manipola i dati contenuti su un nastro di lunghezza potenzialmente infinita, secondo un insieme prefissato di regole ben definite. In altre parole, è un modello astratto che definisce una macchina in grado di eseguire algoritmi e dotata di un nastro potenzialmente infinito su cui può leggere e/o scrivere dei simboli. (it)
  • In de informatica is de turingmachine een model van berekening en berekenbaarheid, ontwikkeld door de wiskundige Alan M. Turing in zijn beroemde artikel "On computable numbers, with an application to the Entscheidungsproblem" uit 1936-37. (nl)
  • Maszyna Turinga – stworzony przez Alana Turinga abstrakcyjny model komputera służącego do wykonywania algorytmów, składającego się z nieskończenie długiej taśmy podzielonej na pola w których zapisuje się dane. Taśma może być nieskończona jednostronnie lub obustronnie. Każde pole może znajdować się w jednym z N stanów. Maszyna zawsze jest ustawiona nad jednym z pól i znajduje się w jednym z M stanów. Zależnie od kombinacji stanu maszyny i pola maszyna zapisuje nową wartość w polu, zmienia stan, a następnie może przesunąć się o jedno pole w prawo lub w lewo. Taka operacja nazywana jest rozkazem. Maszyna Turinga jest sterowana listą zawierającą dowolną liczbę takich rozkazów. Liczby N i M mogą być dowolne, byle skończone. Czasem dopuszcza się też stan M+1, który oznacza zakończenie pracy masz (pl)
  • A Máquina de Turing é um dispositivo teórico conhecido como máquina universal, que foi concebido pelo matemático britânico Alan Turing (1912-1954), muitos anos antes de existirem os modernos computadores digitais (o artigo de referência foi publicado em 1936).Num sentido preciso, é um modelo abstrato de um computador, que se restringe apenas aos aspectos lógicos do seu funcionamento (memória, estados e transições) e não à sua implementação física. Numa máquina de Turing pode-se modelar qualquer computador digital. (pt)
rdfs:label
  • Turing machine (en)
  • آلة تورنج (ar)
  • Turingmaschine (de)
  • Máquina de Turing (es)
  • Machine de Turing (fr)
  • Macchina di Turing (it)
  • チューリングマシン (ja)
  • Turingmachine (nl)
  • Maszyna Turinga (pl)
  • Máquina de Turing (pt)
  • Машина Тьюринга (ru)
  • 图灵机 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of