In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.

Property Value
dbo:abstract
  • In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications. The most familiar trigonometric functions are the sine, , and . In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray starting at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers. Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year. In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) ملف:Disambigua compass.svg ميز عن دالة مثلثية الشكل. في الرياضيات، الدوال المثلثية أو التوابع المثلثية هي دوال لزاوية هندسية. وهي دوال مهمة عندما يُراد دراسة مثلث أوعرض ظواهرِ دورية أو متكررة كالموجات. يمكن تعريف هذه الدوال نسبةً بين أضلاع مثلث قائم يَحتوي تلك الزاويةَ أَو بشكل أكثر عمومية إحداثياتٍ على دائرة مثلثية أو دائرة واحدية. يعتبر دوما عند الإشارة إلى المثلثات أن الحديث يدور حول مثلث في سطح مستوي (مستوى إحداثي أو إقليدي)، وذلك ليكون مجموع الزوايا 180 درجة دائما. الدوال المثلثية الأكثر انتشارا هي دالة الجيب (يرمز إليها ب Sin) ودالة الجيب التمام (يرمز إليها ب Cos) ودالة الظل (يرمز إليها ب Tg أو Tan). (ar)
  • Mit trigonometrischen Funktionen oder auch Winkelfunktionen (seltener: Kreisfunktionen oder goniometrische Funktionen) bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel ermöglichen Berechnungen bei Vermessungsaufgaben, die Winkel und Seitenlängen in Dreiecken nutzen. Die trigonometrischen Funktionen sind außerdem die grundlegenden Funktionen zur Beschreibung periodischer Vorgänge in den Naturwissenschaften. (de)
  • En mathématiques, les fonctions trigonométriques sont des fonctions dont la variable est une mesure d'angle. Elles permettent de relier les longueurs des côtés d'un triangle (τρίγωνον, trigonon en grec) en fonction de la mesure des angles aux sommets. Plus généralement, les fonctions trigonométriques sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle aussi fonctions circulaires) et modéliser des phénomènes périodiques. Les trois fonctions trigonométriques les plus utilisées sont le sinus (noté sin), le cosinus (cos) et la tangente (tan, – tang ou tg–). Les relations entre les différentes fonctions trigonométriques constituent les identités trigonométriques. En analyse mathématique, ces fonctions peuvent aussi être définies à partir de la somme de séries entières ou comme les solutions d'équations différentielles ce qui permet de les généraliser à des nombres complexes. Selon les domaines d'application, en navigation maritime ou aérienne notamment, d'autres fonctions sont utilisées : cotangente, sécante, cosécante, sinus verse, haversine, exsécante, etc. Par ailleurs, sur le modèle des fonctions trigonométriques, on définit aussi des fonctions hyperboliques dont le nom dérive des premières : sinus hyperbolique (sinh), cosinus hyperbolique (cosh), tangente hyperbolique (tanh), etc. (fr)
  • En matemáticas, las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos. Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones. (es)
  • In matematica, le funzioni trigonometriche o funzioni goniometriche o funzioni circolari sono funzioni di un angolo; esse sono importanti nello studio dei triangoli e nella modellizzazione dei fenomeni periodici, oltre a un gran numero di altre applicazioni. Sono spesso definite come rapporti fra i lati di un triangolo rettangolo contenenti l'angolo e, equivalentemente, possono essere definite come le lunghezze di diversi segmenti costruiti dal cerchio unitario. Definizioni più moderne li esprimono come serie infinite o come soluzioni di certe equazioni differenziali, ottenendo la loro estensione a valori positivi o negativi e anche ai numeri complessi. Tutti questi differenti approcci sono presentati di seguito. Lo studio delle funzioni trigonometriche risale ai tempi dei babilonesi, e una quantità considerevole del lavoro fondamentale fu svolto dai matematici greci, indiani e persiani. Nell'uso corrente, vi sono sei funzioni trigonometriche di base, che sono elencate sotto insieme alle identità che le mettono in relazione. Specialmente per le ultime quattro, queste relazioni sono spesso prese come definizioni di quelle funzioni, sebbene sia ugualmente possibile definirle geometricamente o per altre vie, e solo in seguito derivare queste relazioni. Poche altre funzioni erano comuni in passato (e figuravano nelle vecchie tabelle) ma sono oggi poco usate, come il senoverso (1 − cos θ) e l'exsecante (sec θ − 1). Molte altre relazioni notevoli fra queste funzioni sono elencate nella voce sulle identità trigonometriche. (it)
  • 三角関数(さんかくかんすう、英: trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、英: circular function)と呼ばれることがある。 三角関数には以下の6つがある。 * sin(正弦、sine) * sec(正割、secant) * tan(正接、tangent) * cos(余弦、cosine) * csc(余割、cosecant) * cot(余接、cotangent) 特に sin, cos は幾何学的にも解析学的にも良い性質を持っているので、様々な分野で用いられる。例えば波や電気信号などは正弦関数と余弦関数を組み合わせることで表現することができる。この事実はフーリエ級数およびフーリエ変換の理論として知られ、音声などの信号の合成や解析の手段として利用されている。他にもベクトルの外積や内積は正弦関数および余弦関数を用いて表すことができ、ベクトルを図形に対応づけることができる。初等的には、三角関数は実数を変数とする一変数関数として定義される。三角関数の変数の対応するものとしては、図形のなす角度や、物体の回転角、波や信号のような周期的なものに対する位相などが挙げられる。 三角関数に用いられる独特な記法として、三角関数の累乗と逆関数に関するものがある。通常、関数 f (x) の累乗は (f (x))2 = f (x)・f (x) や (f (x))−1 = 1 / f (x) のように書くが、三角関数の累乗は sin2x のように書かれることが多い。逆関数については通常の記法 (f −1(x)) と同じく、sin−1x などと表す(この文脈では従って、三角関数の逆数は分数を用いて 1sin x のように、あるいは (sin x)−1 などと表される)。文献あるいは著者によっては、通常の記法と三角関数に対する特殊な記法との混同を避けるため、三角関数の累乗を通常の関数と同様にすることがある。また、三角関数の逆関数として −1 と添え字する代わりに関数の頭に arc とつけることがある(たとえば sin の逆関数として sin−1 の代わりに arcsin を用いる)。 三角関数に似た性質を持つ関数として、指数関数や双曲線関数、ベッセル関数などがある。また、三角関数を利用して定義される関数としてしばしば応用されるものにsinc関数がある。 (ja)
  • Een goniometrische functie, ook wel trigonometrische functie genoemd, is een oorspronkelijk in de goniometrie gedefinieerde functie van een hoek die een verband legt tussen een scherpe hoek in een rechthoekige driehoek en de verhouding van bepaalde zijden van die driehoek. In de wiskunde zijn deze functies gegeneraliseerd. De inverse van de goniometrische functie is de cyclometrische functie. De meest gebruikte goniometrische functies zijn: * sinus (sin) * cosinus (cos) * tangens (tan of tg) * cotangens (cot) * secans (sec) * cosecans (csc of cosec) In de onderstaande tabel staan enkele verbanden tussen de verschillende goniometrische functies. (nl)
  • Funkcje trygonometryczne – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych, będące przedmiotem badań trygonometrii. Funkcje trygonometryczne, choć wywodzą się z pojęć geometrycznych, są rozpatrywane także w oderwaniu od geometrii. W analizie matematycznej są one definiowane m.in. za pomocą szeregów potęgowych lub jako rozwiązania pewnych równań różniczkowych. Do funkcji trygonometrycznych współcześnie zalicza się: sinus, cosinus (inna pisownia: kosinus), tangens, cotangens (kotangens), secans (sekans), cosecans (kosekans), z czego dwóch ostatnich obecnie rzadko się używa. Funkcje trygonometryczne znajdują zastosowanie w wielu działach matematyki, innych naukach ścisłych i technice; działem matematyki badającym te funkcje jest trygonometria, lub ściślej: goniometria. (pl)
  • Em matemática, as funções trigonométricas são funções angulares, importantes no estudo dos triângulos e na modelação de fenômenos periódicos. Podem ser definidas como razões entre dois lados de um triângulo retângulo em função de um ângulo, ou, de forma mais geral, como razões de coordenadas de pontos no círculo unitário. Na análise matemática, estas funções recebem definições ainda mais gerais, na forma de séries infinitas ou como soluções para certas equações diferenciais. Neste último caso, as funções trigonométricas estão definidas não só para ângulos reais como também para ângulos complexos. Atualmente, existem seis funções trigonométricas básicas em uso, cada uma com a sua abreviatura notacional padrão conforme tabela abaixo. As inversas destas funções são chamadas de função de arco ou funções trigonométricas inversas. A nomenclatura é feita através do prefixo "arco-", ou seja, arco seno, arco cosseno, etc. Matematicamente, são designadas por "arcfunção", i.e., arcsen, arccos, etc.; a notação usando-se −1 como na notação da função inversa não é recomendada, pois causa confusão com o inverso multiplicativo, como em sen-1 e cos-1. O resultado da função inversa é o ângulo que corresponde ao parâmetro da função. Por exemplo: pois (pt)
  • Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией. К тригонометрическим функциям относятся: прямые тригонометрические функции * синус () * косинус () производные тригонометрические функции * тангенс () * котангенс () другие тригонометрические функции * секанс () * косеканс () В западной литературе тангенс, котангенс и косеканс обозначаются . Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т. д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях. Синус и косинус вещественного аргумента представляют собой периодические, и бесконечно вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и бесконечно дифференцируемые в области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках , а котангенс и косеканс — в точках .Графики тригонометрических функций показаны на рис. 1. (ru)
  • 三角函数是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数( )、余弦函数( )和正切函数( 或者 )。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 30367 (xsd:integer)
dbo:wikiPageRevisionID
  • 743999453 (xsd:integer)
dbp:id
  • p/t094210
dbp:title
  • Trigonometric functions
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • Mit trigonometrischen Funktionen oder auch Winkelfunktionen (seltener: Kreisfunktionen oder goniometrische Funktionen) bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel ermöglichen Berechnungen bei Vermessungsaufgaben, die Winkel und Seitenlängen in Dreiecken nutzen. Die trigonometrischen Funktionen sind außerdem die grundlegenden Funktionen zur Beschreibung periodischer Vorgänge in den Naturwissenschaften. (de)
  • En matemáticas, las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos. Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones. (es)
  • 三角函数是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数( )、余弦函数( )和正切函数( 或者 )。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。 (zh)
  • In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) ملف:Disambigua compass.svg ميز عن دالة مثلثية الشكل. في الرياضيات، الدوال المثلثية أو التوابع المثلثية هي دوال لزاوية هندسية. وهي دوال مهمة عندما يُراد دراسة مثلث أوعرض ظواهرِ دورية أو متكررة كالموجات. يمكن تعريف هذه الدوال نسبةً بين أضلاع مثلث قائم يَحتوي تلك الزاويةَ أَو بشكل أكثر عمومية إحداثياتٍ على دائرة مثلثية أو دائرة واحدية. يعتبر دوما عند الإشارة إلى المثلثات أن الحديث يدور حول مثلث في سطح مستوي (مستوى إحداثي أو إقليدي)، وذلك ليكون مجموع الزوايا 180 درجة دائما. (ar)
  • En mathématiques, les fonctions trigonométriques sont des fonctions dont la variable est une mesure d'angle. Elles permettent de relier les longueurs des côtés d'un triangle (τρίγωνον, trigonon en grec) en fonction de la mesure des angles aux sommets. Plus généralement, les fonctions trigonométriques sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle aussi fonctions circulaires) et modéliser des phénomènes périodiques. (fr)
  • 三角関数(さんかくかんすう、英: trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、英: circular function)と呼ばれることがある。 三角関数には以下の6つがある。 * sin(正弦、sine) * sec(正割、secant) * tan(正接、tangent) * cos(余弦、cosine) * csc(余割、cosecant) * cot(余接、cotangent) 三角関数に似た性質を持つ関数として、指数関数や双曲線関数、ベッセル関数などがある。また、三角関数を利用して定義される関数としてしばしば応用されるものにsinc関数がある。 (ja)
  • In matematica, le funzioni trigonometriche o funzioni goniometriche o funzioni circolari sono funzioni di un angolo; esse sono importanti nello studio dei triangoli e nella modellizzazione dei fenomeni periodici, oltre a un gran numero di altre applicazioni. Lo studio delle funzioni trigonometriche risale ai tempi dei babilonesi, e una quantità considerevole del lavoro fondamentale fu svolto dai matematici greci, indiani e persiani. (it)
  • Een goniometrische functie, ook wel trigonometrische functie genoemd, is een oorspronkelijk in de goniometrie gedefinieerde functie van een hoek die een verband legt tussen een scherpe hoek in een rechthoekige driehoek en de verhouding van bepaalde zijden van die driehoek. In de wiskunde zijn deze functies gegeneraliseerd. De inverse van de goniometrische functie is de cyclometrische functie. De meest gebruikte goniometrische functies zijn: * sinus (sin) * cosinus (cos) * tangens (tan of tg) * cotangens (cot) * secans (sec) * cosecans (csc of cosec) (nl)
  • Funkcje trygonometryczne – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych, będące przedmiotem badań trygonometrii. Funkcje trygonometryczne, choć wywodzą się z pojęć geometrycznych, są rozpatrywane także w oderwaniu od geometrii. W analizie matematycznej są one definiowane m.in. za pomocą szeregów potęgowych lub jako rozwiązania pewnych równań różniczkowych. (pl)
  • Em matemática, as funções trigonométricas são funções angulares, importantes no estudo dos triângulos e na modelação de fenômenos periódicos. Podem ser definidas como razões entre dois lados de um triângulo retângulo em função de um ângulo, ou, de forma mais geral, como razões de coordenadas de pontos no círculo unitário. Na análise matemática, estas funções recebem definições ainda mais gerais, na forma de séries infinitas ou como soluções para certas equações diferenciais. Neste último caso, as funções trigonométricas estão definidas não só para ângulos reais como também para ângulos complexos. (pt)
  • Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией. ) (ru)
rdfs:label
  • Trigonometric functions (en)
  • دوال مثلثية (ar)
  • Trigonometrische Funktion (de)
  • Función trigonométrica (es)
  • Fonction trigonométrique (fr)
  • Funzione trigonometrica (it)
  • 三角関数 (ja)
  • Goniometrische functie (nl)
  • Funkcje trygonometryczne (pl)
  • Função trigonométrica (pt)
  • Тригонометрические функции (ru)
  • 三角函数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of