In mathematics, a theorem is a statement that has been proved on the basis of previously established statements, such as other theorems—and generally accepted statements, such as axioms. A theorem is a logical consequence of the axioms. The proof of a mathematical theorem is a logical argument for the theorem statement given in accord with the rules of a deductive system. The proof of a theorem is often interpreted as justification of the truth of the theorem statement. In light of the requirement that theorems be proved, the concept of a theorem is fundamentally deductive, in contrast to the notion of a scientific law, which is experimental.

Property Value
dbo:abstract
  • In mathematics, a theorem is a statement that has been proved on the basis of previously established statements, such as other theorems—and generally accepted statements, such as axioms. A theorem is a logical consequence of the axioms. The proof of a mathematical theorem is a logical argument for the theorem statement given in accord with the rules of a deductive system. The proof of a theorem is often interpreted as justification of the truth of the theorem statement. In light of the requirement that theorems be proved, the concept of a theorem is fundamentally deductive, in contrast to the notion of a scientific law, which is experimental. Many mathematical theorems are conditional statements. In this case, the proof deduces the conclusion from conditions called hypotheses or premises. In light of the interpretation of proof as justification of truth, the conclusion is often viewed as a necessary consequence of the hypotheses, namely, that the conclusion is true in case the hypotheses are true, without any further assumptions. However, the conditional could be interpreted differently in certain deductive systems, depending on the meanings assigned to the derivation rules and the conditional symbol. Although they can be written in a completely symbolic form, for example, within the propositional calculus, theorems are often expressed in a natural language such as English. The same is true of proofs, which are often expressed as logically organized and clearly worded informal arguments, intended to convince readers of the truth of the statement of the theorem beyond any doubt, and from which a formal symbolic proof can in principle be constructed. Such arguments are typically easier to check than purely symbolic ones—indeed, many mathematicians would express a preference for a proof that not only demonstrates the validity of a theorem, but also explains in some way why it is obviously true. In some cases, a picture alone may be sufficient to prove a theorem. Because theorems lie at the core of mathematics, they are also central to its aesthetics. Theorems are often described as being "trivial", or "difficult", or "deep", or even "beautiful". These subjective judgments vary not only from person to person, but also with time: for example, as a proof is simplified or better understood, a theorem that was once difficult may become trivial. On the other hand, a deep theorem may be simply stated, but its proof may involve surprising and subtle connections between disparate areas of mathematics. Fermat's Last Theorem is a particularly well-known example of such a theorem. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) المبرهنة (باللاتينية: theorema) قضية افتراضية (بمعنى جملة خبرية : تحتمل الصدق والكذب) قد تم البرهنة عليهاوإثباتها أو أنها مطلوب إثباتها، وذلك بناء على افتراضات صريحة (واضحة محددة). يعتبر برهنة المبرهنات إحدى أهم فعاليات الرياضيين. يجب عدم الخلط بين المبرهنة و« النظرية ». المبرهنات بشكل عام تحتاج إلى تأسيس، عدد من الشروط التي يجب أن تذكر وتحقق قبل ذكر المبرهنة، عندئذ تكون المبرهنة استنتاجا لهذه الشروط، فتكون المبرهنة عبارة رياضية صحيحة عند تحقق الشروط المذكورة. ومع ان البرهان الرياضي ضروري في حال المبرهنات فإنه لا يعتبر جزءا من المبرهنة. (ar)
  • Ein Satz oder Theorem ist in der Mathematik eine widerspruchsfreie logische Aussage, die mittels eines Beweises als wahr erkannt, das heißt, aus Axiomen und bereits bekannten Sätzen hergeleitet werden kann. Ein Satz wird nach seiner Rolle, seiner Bedeutung oder seinem Kontext oft auch anders bezeichnet: 1. * Ein Lemma ist eine Aussage, die als Hilfssatz nur im Beweis anderer Sätze verwendet wird. 2. * Ein Korollar ist eine triviale Folgerung, die sich aus einem Satz oder einer Definition ohne großen Aufwand ergibt. 3. * Der Satz im engeren Sinn gibt eine wesentliche Erkenntnis wieder. (de)
  • Un teorema es una proposición que afirma una verdad demostrable. En matemáticas, es toda proposición que partiendo de un supuesto (hipótesis), afirma una verdad (tesis) no evidente por sí misma. Un teorema es una fórmula bien formada que puede ser demostrada dentro de un sistema formal, partiendo de axiomas u otros teoremas. Demostrar teoremas es un asunto central en la lógica matemática. Los teoremas también pueden ser expresados en lenguaje natural formalizado. Un teorema generalmente posee un número de premisas que deben ser enumeradas o aclaradas de antemano. Luego existe una conclusión, una afirmación lógica o matemática, la cual es verdadera bajo las condiciones dadas. El contenido informativo del teorema es la relación que existe entre las hipótesis y la tesis o conclusión. Se llama corolario a una afirmación lógica que sea consecuencia inmediata de un teorema, pudiendo ser demostrada usando las propiedades del teorema previamente demostrado. (es)
  • Un théorème est une affirmation (mathématique) qui peut être démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes. Un théorème est à distinguer d'une théorie. Une fois le théorème démontré, il est considéré comme vrai quelle que soit la valeur de vérité de sa prémisse (hypothèse de base) car il se présente sous la forme d'une implication : si A est vraie alors B est nécessairement vraie. Il peut alors être utilisé pour démontrer d'autres propositions. Démontrer le théorème consiste à démontrer l'impossibilité d'avoir à la fois A vrai et B faux. Un théorème a généralement : * des hypothèses de base, i.e. des conditions qui peuvent être énumérées dans le théorème ou décrites d'avance ; * une conclusion, i.e. une affirmation mathématique qui est vraie sous les conditions de base. La démonstration, bien que nécessaire à la classification de la proposition comme « théorème », n'est pas considérée comme faisant partie du théorème. Autre définition possible d'un théorème : « un énoncé dont on peut démontrer l’exactitude. » La démonstration comprend : * des axiomes ; * les hypothèses du théorème ; * d'autres théorèmes déjà démontrés. Chaque étape de la preuve est liée aux précédentes par des règles d'inférence logiques. (fr)
  • Un teorema è una proposizione che, a partire da condizioni iniziali arbitrariamente stabilite, trae delle conclusioni, dandone una dimostrazione. I teoremi svolgono un'importantissima funzione nella matematica, nella fisica e in generale in tutte le materie scientifiche. Teorema in greco significa: ciò che si guarda, su cui si specula (θεώρημα); sul piano etimologico ha la medesima derivazione di teoria (dal verbo θεωρέω theoréo, "guardo, osservo"). (it)
  • 定理(ていり、英: theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、英: lemma)あるいは補助定理(ほじょていり、英: helping theorem)、系(けい、英: corollary)、命題(めいだい、英: proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 前提条件:f(X) が複素数係数の定数でない多項式である 結論: f(X) は複素数の中に根を持つ。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。 (ja)
  • In de wiskunde is een stelling (ook theorema, propositie of these) een bewering, die op basis van axioma's en eerder bewezen beweringen is bewezen. Om een stelling te bewijzen gebruikt men in de wiskunde de regels van de logica. De afleiding van een stelling wordt vaak geïnterpreteerd als een bewijs van de waarheid van de resulterende uitdrukking, maar, afhankelijk van de betekenis van de afleidingsregels kunnen verschillende deductieve systemen verschillende interpretaties opleveren. Stellingen hebben twee componenten, die respectievelijk de hypothesen en de conclusies worden genoemd. Het bewijs van een wiskundige stelling is een logische redenering, waaruit blijkt dat de conclusies een noodzakelijke gevolgtrekking op basis van de hypothesen zijn, in de zin dat als de hypothesen waar zijn, dat dan de conclusies ook waar moeten zijn, en dit zonder verdere aannames. Het concept van een stelling is daarom fundamenteel deductief, dit in tegenstelling tot de notie van een wetenschappelijke theorie, die empirisch is. Een bewezen stelling kan weer gebruikt worden voor verdere bewijsvoering. Een stelling die speciaal voor dit doel opgesteld wordt heet een hulpstelling of lemma. Twee voorbeelden van bekende wiskundige stellingen zijn de stelling van Pythagoras en de laatste stelling van Fermat. Hoewel stellingen in een compleet symbolische vorm kunnen worden geschreven, door bijvoorbeeld gebruik te maken van de predicatenlogica, worden stellingen ook vaak uitgedrukt in een natuurlijke taal zoals Nederlands of Engels. Hetzelfde geldt voor bewijzen, die vaak worden uitgedrukt als logisch geordende en helder geformuleerde en bewoorde informele argumenten, bedoeld om te laten zien dat een formele symbolisch bewijs kan worden geconstrueerd. Dergelijke argumenten zijn meestal gemakkelijker te controleren dan louter symbolische. Veel wiskundigen hebben een voorkeur voor een bewijs dat niet alleen de geldigheid van een stelling aantoont, maar dat ook op de een of andere manier uitlegt waarom het bewijs waar is. In sommige gevallen kan een illustratie al voldoende zijn om een stelling te bewijzen. Omdat stellingen in het hart van de wiskunde liggen, zijn zij ook centraal in de esthetica van de wiskunde. Stellingen worden vaak beschreven in termen als "triviaal", "moeilijk", "diep" of zelfs "mooi". Deze subjectieve oordelen variëren niet alleen van persoon tot persoon, maar ook door de tijd: bijvoorbeeld als een bewijs wordt vereenvoudigd of beter wordt begrepen, kan een stelling die eens als moeilijk gold voor sommigen als triviaal worden ervaren. Aan de andere kant kan een diepe stelling eenvoudig worden geformuleerd, maar kan het bewijs verrassende en subtiele verbindingen tussen uiteenlopende deelgebieden van de wiskunde blootleggen. De laatste stelling van Fermat is een bekend voorbeeld van een dergelijke stelling. (nl)
  • Twierdzenie to sformalizowana wypowiedź sądu, stosowana we wszystkich naukach ścisłych, składająca się z dwóch zbiorów zdań, które łączy relacja implikacji. Pierwszy zbiór zdań określa ściśle warunki dla których dane twierdzenie jest spełnione i nazywa się założeniem twierdzenia, a drugi zbiór zdań jest właściwym sądem, będącym istotną treścią wypowiadanego twierdzenia i zwany jest tezą twierdzenia. Twierdzenie od sylogizmu, który posiada podobną strukturę zdaniową, odróżnia to, że teza twierdzenia nie wynika bezpośrednio z założeń i wymaga osobnego dowodu, w którym trzeba się odnieść do wcześniejszych twierdzeń przyjętych w ramach danej teorii. Sylogizmy wywiedzione z danego twierdzenia są z kolei często nazywane wnioskami z twierdzenia. Czasami nazywa się je także twierdzeniami trywialnymi. Nie wszystkie twierdzenia przyjęte za prawdziwe w danej teorii posiadają dowód. Część z nich ma charakter twierdzeń pierwotnych, które z natury rzeczy nie mogą być dowiedzione. Takie twierdzenia nazywane są aksjomatami. Inne z kolei twierdzenia są przyjęte w pewnym sensie "na wiarę", gdyż mimo braku dowodu wydają się prawdziwe we wszystkich znanych przypadkach. Kurt Gödel dowiódł, że w ramach każdej wystarczająco złożonej teorii składającej się z pojęć pierwotnych i aksjomatów występuje zawsze pewien zbiór twierdzeń, które są prawdziwe, ale nie można ich w ramach danej teorii dowieść. Dodajmy, że "wystarczająco złożonej" oznacza tu zwykle "wystarczającej do zapisania pełnej arytmetyki liczb naturalnych". Jest to tzw. twierdzenie Gödla. Dla uproszczenia część twierdzeń jest podawana w formie jednego zdania złożonego, jednak odróżnienie takiego zdania od zdań trywialnych jest możliwe poprzez rozwinięcie ich do pełnej postaci twierdzenia. Rozważmy dla przykładu następujące twierdzenie sformułowane w postaci jednego zdania: "jeżeli liczba naturalna m jest podzielna przez sześć, to jest ona podzielna przez trzy". To samo twierdzenie z rozbiciem na założenia i tezę wyglądałoby następująco: * założenie - dla każdego m należącego do zbioru liczb naturalnych i podzielnego przez sześć, * teza - m jest podzielne przez trzy. W założeniach twierdzenia bardzo często występują kwantyfikatory, czyli określenia postaci "dla każdego z danych elementów zbioru ..." lub "istnieje taki element zbioru, że ...", jednak znane są także twierdzenia, które da się sformułować bez kwantyfikatorów, stąd występowanie ich nie jest koniecznym warunkiem przyjęcia danej wypowiedzi za twierdzenie. (pl)
  • Na matemática, um teorema é uma afirmação que pode ser provada como verdadeira, por meio de outras afirmações já demonstradas, como outros teoremas, juntamente com afirmações anteriormente aceitas, como axiomas. Prova é o processo de mostrar que um teorema está correto. O termo teorema foi introduzido por Euclides, em Elementos, para significar "afirmação que pode ser provada". Em grego, originalmente significava "espetáculo" ou "festa". Atualmente, é mais comum deixar o termo "teorema" apenas para certas afirmações que podem ser provadas e de grande "importância matemática", o que torna a definição um tanto subjetiva. É importante notar que "teorema" é diferente de "teoria". (pt)
  • Теоре́ма (др.-греч. θεώρημα — «доказательство, вид; взгляд; представление, положение») — утверждение, выводимое в рамках рассматриваемой теории из множества аксиом посредством использования конечного множества правил вывода. В математических текстах теоремами обычно называют только те доказанные утверждения, которые находят широкое применение в решении математических задач. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами. Наиболее знаменитыми являются: теорема Пифагора, теорема Ферма. (ru)
  • 定理(英语:Theorem)是經過受邏輯限制的證明為真的陈述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些 是 ,某些 是 ,就不能算是定理)。 猜想是相信為真但未被證明的數學敘述,或者叫做命题,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。 如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。 在命題邏輯,所有已證明的敘述都稱為定理。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 30977 (xsd:integer)
dbo:wikiPageRevisionID
  • 745058050 (xsd:integer)
dbp:title
  • Theorem
dbp:urlname
  • Theorem
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • Ein Satz oder Theorem ist in der Mathematik eine widerspruchsfreie logische Aussage, die mittels eines Beweises als wahr erkannt, das heißt, aus Axiomen und bereits bekannten Sätzen hergeleitet werden kann. Ein Satz wird nach seiner Rolle, seiner Bedeutung oder seinem Kontext oft auch anders bezeichnet: 1. * Ein Lemma ist eine Aussage, die als Hilfssatz nur im Beweis anderer Sätze verwendet wird. 2. * Ein Korollar ist eine triviale Folgerung, die sich aus einem Satz oder einer Definition ohne großen Aufwand ergibt. 3. * Der Satz im engeren Sinn gibt eine wesentliche Erkenntnis wieder. (de)
  • Un teorema è una proposizione che, a partire da condizioni iniziali arbitrariamente stabilite, trae delle conclusioni, dandone una dimostrazione. I teoremi svolgono un'importantissima funzione nella matematica, nella fisica e in generale in tutte le materie scientifiche. Teorema in greco significa: ciò che si guarda, su cui si specula (θεώρημα); sul piano etimologico ha la medesima derivazione di teoria (dal verbo θεωρέω theoréo, "guardo, osservo"). (it)
  • 定理(ていり、英: theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、英: lemma)あるいは補助定理(ほじょていり、英: helping theorem)、系(けい、英: corollary)、命題(めいだい、英: proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 前提条件:f(X) が複素数係数の定数でない多項式である 結論: f(X) は複素数の中に根を持つ。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。 (ja)
  • 定理(英语:Theorem)是經過受邏輯限制的證明為真的陈述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些 是 ,某些 是 ,就不能算是定理)。 猜想是相信為真但未被證明的數學敘述,或者叫做命题,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。 如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。 在命題邏輯,所有已證明的敘述都稱為定理。 (zh)
  • In mathematics, a theorem is a statement that has been proved on the basis of previously established statements, such as other theorems—and generally accepted statements, such as axioms. A theorem is a logical consequence of the axioms. The proof of a mathematical theorem is a logical argument for the theorem statement given in accord with the rules of a deductive system. The proof of a theorem is often interpreted as justification of the truth of the theorem statement. In light of the requirement that theorems be proved, the concept of a theorem is fundamentally deductive, in contrast to the notion of a scientific law, which is experimental. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) المبرهنة (باللاتينية: theorema) قضية افتراضية (بمعنى جملة خبرية : تحتمل الصدق والكذب) قد تم البرهنة عليهاوإثباتها أو أنها مطلوب إثباتها، وذلك بناء على افتراضات صريحة (واضحة محددة). يعتبر برهنة المبرهنات إحدى أهم فعاليات الرياضيين. يجب عدم الخلط بين المبرهنة و« النظرية ». (ar)
  • Un teorema es una proposición que afirma una verdad demostrable. En matemáticas, es toda proposición que partiendo de un supuesto (hipótesis), afirma una verdad (tesis) no evidente por sí misma. Un teorema es una fórmula bien formada que puede ser demostrada dentro de un sistema formal, partiendo de axiomas u otros teoremas. Demostrar teoremas es un asunto central en la lógica matemática. Los teoremas también pueden ser expresados en lenguaje natural formalizado. (es)
  • Un théorème est une affirmation (mathématique) qui peut être démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes. Un théorème est à distinguer d'une théorie. Un théorème a généralement : * des hypothèses de base, i.e. des conditions qui peuvent être énumérées dans le théorème ou décrites d'avance ; * une conclusion, i.e. une affirmation mathématique qui est vraie sous les conditions de base. Autre définition possible d'un théorème : « un énoncé dont on peut démontrer l’exactitude. » (fr)
  • In de wiskunde is een stelling (ook theorema, propositie of these) een bewering, die op basis van axioma's en eerder bewezen beweringen is bewezen. Om een stelling te bewijzen gebruikt men in de wiskunde de regels van de logica. De afleiding van een stelling wordt vaak geïnterpreteerd als een bewijs van de waarheid van de resulterende uitdrukking, maar, afhankelijk van de betekenis van de afleidingsregels kunnen verschillende deductieve systemen verschillende interpretaties opleveren. Stellingen hebben twee componenten, die respectievelijk de hypothesen en de conclusies worden genoemd. Het bewijs van een wiskundige stelling is een logische redenering, waaruit blijkt dat de conclusies een noodzakelijke gevolgtrekking op basis van de hypothesen zijn, in de zin dat als de hypothesen waar zijn (nl)
  • Twierdzenie to sformalizowana wypowiedź sądu, stosowana we wszystkich naukach ścisłych, składająca się z dwóch zbiorów zdań, które łączy relacja implikacji. Pierwszy zbiór zdań określa ściśle warunki dla których dane twierdzenie jest spełnione i nazywa się założeniem twierdzenia, a drugi zbiór zdań jest właściwym sądem, będącym istotną treścią wypowiadanego twierdzenia i zwany jest tezą twierdzenia. * założenie - dla każdego m należącego do zbioru liczb naturalnych i podzielnego przez sześć, * teza - m jest podzielne przez trzy. (pl)
  • Na matemática, um teorema é uma afirmação que pode ser provada como verdadeira, por meio de outras afirmações já demonstradas, como outros teoremas, juntamente com afirmações anteriormente aceitas, como axiomas. Prova é o processo de mostrar que um teorema está correto. O termo teorema foi introduzido por Euclides, em Elementos, para significar "afirmação que pode ser provada". Em grego, originalmente significava "espetáculo" ou "festa". Atualmente, é mais comum deixar o termo "teorema" apenas para certas afirmações que podem ser provadas e de grande "importância matemática", o que torna a definição um tanto subjetiva. (pt)
  • Теоре́ма (др.-греч. θεώρημα — «доказательство, вид; взгляд; представление, положение») — утверждение, выводимое в рамках рассматриваемой теории из множества аксиом посредством использования конечного множества правил вывода. Наиболее знаменитыми являются: теорема Пифагора, теорема Ферма. (ru)
rdfs:label
  • Theorem (en)
  • مبرهنة (ar)
  • Satz (Mathematik) (de)
  • Teorema (es)
  • Théorème (fr)
  • Teorema (it)
  • 定理 (ja)
  • Stelling (wiskunde) (nl)
  • Twierdzenie (pl)
  • Teorema (pt)
  • Теорема (ru)
  • 定理 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is http://purl.org/linguistics/gold/hypernym of
is foaf:primaryTopic of