Steel is an alloy of iron and other elements, primarily carbon, that is widely used in construction and other applications because of its high tensile strength and low cost. Steel's base metal is iron, which is able to take on two crystalline forms (allotropic forms), body centered cubic (BCC) and face centered cubic (FCC), depending on its temperature. It is the interaction of those allotropes with the alloying elements, primarily carbon, that gives steel and cast iron their range of unique properties. In the body-centred cubic arrangement, there is an iron atom in the centre of each cube, and in the face-centred cubic, there is one at the center of each of the six faces of the cube. Carbon, other elements, and inclusions within iron act as hardening agents that prevent the movement of di

Property Value
dbo:abstract
  • Steel is an alloy of iron and other elements, primarily carbon, that is widely used in construction and other applications because of its high tensile strength and low cost. Steel's base metal is iron, which is able to take on two crystalline forms (allotropic forms), body centered cubic (BCC) and face centered cubic (FCC), depending on its temperature. It is the interaction of those allotropes with the alloying elements, primarily carbon, that gives steel and cast iron their range of unique properties. In the body-centred cubic arrangement, there is an iron atom in the centre of each cube, and in the face-centred cubic, there is one at the center of each of the six faces of the cube. Carbon, other elements, and inclusions within iron act as hardening agents that prevent the movement of dislocations that otherwise occur in the crystal lattices of iron atoms. The carbon in typical steel alloys may contribute up to 2.1% of its weight. Varying the amount of alloying elements, their presence in the steel either as solute elements, or as precipitated phases, retards the movement of those dislocations that make iron comparatively ductile and weak, and thus controls its qualities such as the hardness, ductility, and tensile strength of the resulting steel. Steel's strength compared to pure iron is only possible at the expense of iron's ductility, of which iron has an excess. Steel was produced in bloomery furnaces for thousands of years, but its extensive use began after more efficient production methods were devised in the 17th century, with the production of blister steel and then crucible steel. With the invention of the Bessemer process in the mid-19th century, a new era of mass-produced steel began. This was followed by Siemens-Martin process and then Gilchrist-Thomas process that refined the quality of steel. With their introductions, mild steel replaced wrought iron. Further refinements in the process, such as basic oxygen steelmaking (BOS), largely replaced earlier methods by further lowering the cost of production and increasing the quality of the product. Today, steel is one of the most common materials in the world, with more than 1.3 billion tons produced annually. It is a major component in buildings, infrastructure, tools, ships, automobiles, machines, appliances, and weapons. Modern steel is generally identified by various grades defined by assorted standards organizations. (en)
  • الصلب أو الفولاذ هو سبيكة من الحديد تحتوي على إضافات من الكربون تتراوح بين (0.2% - 2.0%) من وزن السبيكة حسب نوع السبيكة، وهو يعتبر العنصر المضاف الأساسي في سبائك الصلب. إذا زادت نسبة الكربون في الحديد عن 1و2 % يصبح هشا ويسمى في تلك الحالة حديد زهر. تحتوي سبائك الصلب على نسب من معادن أخرى مثل النيكل والكروم والفاناديوم والسيليكون والموليبدينيوم والفسفور والكبريت وغيرها من العناصر الأخرى. يقوم الكربون وعناصر أخرى بتقسية الصلب، ومنع طبقات الحديد في البنية البلورية من الانزلاق فوق بعضها البعض (الانخلاع). باختلاف العناصر المضافة لسبائك الصلب وشكل وجودها في الصلب (كعناصر ذائبة في المعدن أو كترسبات في المعدن)، تختلف خواص السبائك مثل الصلادة والمرونة ومقاومة السبيكة للشد في سبيكة الصلب الناتجة عن تلك الإضافات. عندما تزداد نسبة الكربون في السبيكة عن (2.1%)، يطلق على هذه السبيكة اسم الحديد الزهر والتي تتميز بانخفاض درجة انصهارها وقابليتها للتسبك . أُنتج الصلب باستخدام طرق مختلفة قبل عصر النهضة بفترة طويلة، لكنها لم تكن طرقاً فعالة. أصبح استخدام الصلب أكثر شيوعاً بعد تطوير طرق إنتاجه في القرن السابع عشر. بعد اختراع طريقة بسمر في منتصف القرن التاسع عشر، أصبح عملية إنتاج الصلب بكميات ضخمة غير مكلفة. بعد إضافة بعض التعديلات على هذه الطريقة، ظهرت طرق أخرى مثل فرن أكسجين قاعدي، التي خفضت تكلفة الإنتاج وحسّنت جودة المعدن. اليوم، الصلب هو واحد من أكثر المواد استخداماً في العالم، بإنتاج يقدر بـ 1,300 مليون طن سنوياً، وهو العنصر الأساسي في قطاع البناء والمعدات والسفن والسيارات والماكينات والتجهيزات المنزلية والأسلحة. يصنف الصلب حديثاً بمختلف رتبه طبقاً لعدة معايير دولية مثل تصنيف جمعية مهندسي السيارات للصلب (بالإنجليزية: SAE steel grades) والتصنيف الأوروبي للصلب (بالإنجليزية: EN steel grades) وتصنيف المعهد الألماني للتوحيد القياسي (بالإنجليزية: DIN steel grades) وغيرها. (ar)
  • Als Stahl (aus ahd. stahel / stāl; auch in mnd. stāl, mnl. stael und an. stál; verwandt mit as. stehli ‚Axt‘ und ae. stīle; weitere Herkunft nicht gesichert) werden metallische Legierungen bezeichnet, deren Hauptbestandteil Eisen ist und die (im Unterschied zum Gusseisen) umformtechnisch verarbeitet werden können. Genauere Definitionen sind nicht einheitlich, einige sind durch die heutige Vielfalt an technischen Legierungen ungenau geworden. Häufig anzutreffen ist die Definition nach DIN EN 10020:2000–07, nach der der Kohlenstoffgehalt der Eisenlegierung im Allgemeinen kleiner als 2 % sein muss, mit Ausnahme einer begrenzten Anzahl an Chromstählen. Diese allgemeine, seit dem frühen 20. Jahrhundert gebräuchliche Definition umfasst mit dem Begriff Stahl auch das damals kaum mehr produzierte Schmiedeeisen, das ebenfalls einen Kohlenstoff-Gehalt von unter 2 % hatte. Der Begriff Schmiedeeisen beschreibt nicht die Bestandteile der Legierung, sondern die über viele Jahrhunderte entwickelten Verfahren zur Herstellung verformbarer Eisenteile, die im Wesentlichen auf unterschiedlichen Arten des Frischens von Eisen-Luppen und anschließendem Schmieden beruhten. Zwar hat Schmiedeeisen ähnliche Kohlenstoffanteile wie heutiger Stahl, ist aber aufgrund einer geringfügig abweichenden Legierung mit anderen Stoffen und den nicht restlos entfernten Schlacketeilen nicht identisch mit modernem Stahl. Einfacher härtbarer Stahl wurde bereits bei den Hethitern vor ca. 3500 Jahren z. B. für Waffen hergestellt. Heute wird er mit verschiedenen vorbestimmten Eigenschaften (Festigkeit, Korrosionsverhalten, Verformbarkeit, Schweißeignung) angeboten. Im Register europäischer Stähle sind über 2500 Stahlsorten (Stand: 2013) aufgelistet. Kohle und Stahl (Montanindustrie) waren lange Zeit Hauptsäulen der Schwerindustrie und Grundlage für die politische Macht eines Staats. Weltweit werden jährlich etwa 1,6 Mrd. t Stahl hergestellt (Stand 2014), damit ist Stahl der mit Abstand meistverwendete metallische Werkstoff. (de)
  • El término acero sirve comúnmente para denominar, en ingeniería metalúrgica, a una mezcla de hierro con una cantidad de carbono variable entre el 0,03 % y el 2,14 % en masa de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,14 % se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas. No se debe confundir el acero con el hierro, que es un metal duro y relativamente dúctil, con diámetro atómico (dA) de 2,48 Å, con temperatura de fusión de 1535 °C y punto de ebullición 2740 °C. Por su parte, el carbono es un no metal de diámetro menor (dA = 1,54 Å), blando y frágil en la mayoría de sus formas alotrópicas (excepto en la forma de diamante). La difusión de este elemento en la estructura cristalina del anterior se logra gracias a la diferencia en diámetros atómicos, formándose un compuesto intersticial. La diferencia principal entre el hierro y el acero se halla en el porcentaje del carbono: el acero es hierro con un porcentaje de carbono de entre el 0,03 % y el 1,075 %, a partir de este porcentaje se consideran otras aleaciones con hierro. Cabe destacar que el acero posee diferentes constituyentes según su temperatura, concretamente, de mayor a menor dureza, perlita, cementita y ferrita; además de la austenita (para mayor información consultar el artículo Diagrama Hierro-Carbono). El acero conserva las características metálicas del hierro en estado puro, pero la adición de carbono y de otros elementos tanto metálicos como no metálicos mejora sus propiedades físico-químicas. Existen muchos tipos de acero en función del elemento o los elementos aleantes que estén presentes. La definición en porcentaje de carbono corresponde a los aceros al carbono, en los cuales este no metal es el único aleante, o hay otros pero en menores concentraciones. Otras composiciones específicas reciben denominaciones particulares en función de múltiples variables como por ejemplo los elementos que predominan en su composición (aceros al silicio), de su susceptibilidad a ciertos tratamientos (aceros de cementación), de alguna característica potenciada (aceros inoxidables) e incluso en función de su uso (aceros estructurales). Usualmente estas aleaciones de hierro se engloban bajo la denominación genérica de aceros especiales, razón por la que aquí se ha adoptado la definición de los comunes o "al carbono" que además de ser los primeros fabricados y los más empleados, sirvieron de base para los demás. Esta gran variedad de aceros llevó a Siemens a definir el acero como «un compuesto de hierro y otra sustancia que incrementa su resistencia». (es)
  • Un acier est un alliage métallique constitué principalement de fer et de carbone (dans des proportions comprises entre 0,02 % et 2 % en masse pour le carbone). C’est essentiellement la teneur en carbone qui confère à l’alliage les propriétés du métal qu’on appelle « acier ». Il existe d’autres métaux à base de fer qui ne sont pas des aciers comme les fontes et les ferroalliages par exemple. (fr)
  • 鋼(はがね、こう、釼は異体字、英: steel)とは、鉄の持つ性能(強度、磁性、耐熱性など)を高めた鉄合金を指す。 一般に鋼とは、0.3%〜2%の炭素を含んだ鉄合金の総称であるが、0.3%以下の炭素量でも、ステンレスや耐熱鋼などは鋼として扱われる。軟鉄や鋳鉄とあわせて鉄鋼(てっこう)とも呼ばれ、鋼でできた材料を鋼材、板状のものを鋼板と呼ぶ。日本語の「はがね」の由来は「刃金」である。20世紀後半には多くの新材料が発達したが、鋼は依然として産業上重要な位置を占めている。 (ja)
  • Staal is een legering bestaand uit ijzer en koolstof. De term staal wordt met name gebruikt voor ijzerlegeringen met een zodanig beperkt koolstofgehalte (typisch minder dan 1,9%) of gehalte aan toevoegingen als chroom, dat ze warm vervormd kunnen worden. Hierin onderscheidt staal zich van bijvoorbeeld gietijzer, dat een hoger koolstofgehalte heeft. Er zijn veel verschillende legeringen met deze twee elementen, meestal ook met andere bestanddelen, er bestaan dus ook zeer veel soorten staal. Door de grote keuze en zijn goede bewerkbaarheid is het een veel gebruikt constructiemateriaal. De koolstof wordt gebruikt om een hoge treksterkte en hardheid te verkrijgen. Wereldwijd wordt er jaarlijks ongeveer 1600 miljoen ton staal geproduceerd. (nl)
  • Acciaio è il nome dato a una lega composta principalmente da ferro e carbonio, quest'ultimo in percentuale non superiore al 2,11%: oltre tale limite, le proprietà del materiale cambiano e la lega assume la denominazione di ghisa. (it)
  • Stal – stop żelaza z węglem, plastycznie obrobiony i obrabialny cieplnie, o zawartości węgla nieprzekraczającej 2,14%, co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali stopowych zawartość węgla może być dużo wyższa). Węgiel w stali najczęściej występuje w postaci perlitu płytkowego. Niekiedy jednak, szczególnie przy większych zawartościach węgla, cementyt występuje w postaci kulkowej w otoczeniu ziaren ferrytu. Im większa zawartość węgla, a w konsekwencji udział twardego i kruchego cementytu, tym większa twardość stali. Węgiel w stalach niskostopowych wpływa na twardość poprzez wpływ na hartowność stali; im większa zawartość węgla tym dłuższy czas jest potrzebny do przemiany perlitycznej – co w konsekwencji prowadzi do przemiany bainitycznej i martenzytycznej. W stalach stopowych wpływ węgla na twardość jest również spowodowany tendencją niektórych metali, głównie chromu, do tworzenia związków z węglem – głównie węglików o bardzo wysokiej twardości. Według obecnie obowiązującej Polskiej Normy PN-EN 10020:2003 stal definiuje się jako materiał zawierający (masowo) więcej żelaza niż jakiegokolwiek innego pierwiastka, o zawartości węgla w zasadzie mniejszej niż 2% i zawierający inne pierwiastki. Ograniczona liczba stali chromowych może zawierać więcej niż 2% C, lecz 2% jest ogólnie przyjętą wartością odróżniającą stal od żeliwa. Stal obok żelaza i węgla zawiera zwykle również inne składniki. Do pożądanych składników stopowych zalicza się głównie metale, zwykle chrom, nikiel, mangan, wolfram, miedź, molibden, tytan. Pierwiastki takie jak tlen, azot, siarka oraz wtrącenia niemetaliczne, głównie tlenków siarki i fosforu zwane są zanieczyszczeniami. Stal otrzymuje się z surówki w procesie świeżenia (dawny proces) lub – w nowoczesnych instalacjach hutniczych – z wykorzystaniem pieców konwertorowych, łukowych i próżniowych, pozwalających na uzyskanie wysokiej jakości stali. Pierwotnym produktem hutniczym jest staliwo (np. w postaci kęsów, kęsisk lub kęsisk płaskich), które przerabiane jest na stal za pomocą obróbki plastycznej. Stalowe wyroby hutnicze to m.in. pręty okrągłe, kwadratowe lub sześciokątne, rury okrągłe, profile zamknięte i otwarte (płaskowniki, kątowniki, ceowniki, teowniki, dwuteowniki), blachy. (pl)
  • O aço é uma liga metálica formada essencialmente por ferro e carbono, com percentagens deste último variando entre 0,008 e 2,11%. Distingue-se do ferro fundido, que também é uma liga de ferro e carbono, mas com teor de carbono acima de 2,11%. O carbono é um material muito usado nas ligas de ferro, porém varia com o uso de outros elementos como: magnésio, cromo, vanádio e tungstênio. O carbono e outros elementos químicos agem com o agente de resistência, prevenindo o deslocamento em que um átomo de ferro em uma estrutura cristalina passa para outro. A diferença fundamental entre ambos é que o aço, pela sua ductibilidade, é facilmente deformável por forja, laminação e extrusão, enquanto que uma peça em ferro fundido é muito frágil.O aço pode ser classificado da seguinte maneira: * Quantidade de carbono em porcentagem * Composição química * Quanto à constituição microestrutura * Quanto à sua aplicação A classificação mais comum é de acordo com a composição química, dentre os sistemas de classificação química o SAE é o mais utilizado, e adota a notação ABXX, em que AB se refere a elementos de liga adicionados intencionalmente, e XX ao percentual em peso de carbono multiplicado por cem. Além dos componentes principais indicados, o aço incorpora outros elementos químicos, alguns prejudiciais, provenientes da sucata, do mineral ou do combustível empregue no processo de fabricação, como o enxofre e o fósforo. Outros são adicionados intencionalmente para melhorar algumas características do aço para aumentar a sua resistência, ductibilidade, dureza ou outra, ou para facilitar algum processo de fabrico, como usinabilidade, é o caso de elementos de liga como o níquel, o cromo, o molibdênio e outros. No aço comum o teor de impurezas (elementos além do ferro e do carbono) estará sempre abaixo dos 2%. Acima dos 2 até 5% de outros elementos já pode considerado aço de baixa-liga, acima de 5% é considerado de alta-liga. O enxofre e o fósforo são elementos prejudicais ao aço pois acabam por intervir nas suas propriedades físicas, deixando-o quebradiço. Dependendo das exigências cobradas, o controle sobre as impurezas pode ser menos rigoroso ou então podem pedir o uso de um antissulfurante como o magnésio e outros elementos de liga benéficos. Existe uma classe de aços carbono, conhecida como aços de fácil usinabilidade, que contém teores mínimos de fósforo e enxofre. Estes dois elementos proporcionam um melhor corte das ferramentas de usinagem, promovendo a quebra do cavaco e evitando a aderência do mesmo na ferramenta. estes aços são utilizados quando as propriedades de usinabilidade são prioritárias, em relação as propriedades mecânicas e microestruturais, (peças de baixa responsabilidade). O aço inoxidável é um aço de alta-liga com teores de cromo e de níquel em altas doses (que ultrapassam 20%). Os aços inoxidáveis podem ser divididos em três categorias principais: aços inoxidáveis austeníticos, os quais contém elevados teores de cromo e níquel, os aços inoxidáveis martensíticos, que contém elevado teor de cromo, com baixo teor de níquel e teor de carbono suficiente para se alcançar durezas médias ou altas no tratamento térmico de têmpera, e os aços inoxidáveis ferríticos, que contém elevado teor de cromo e baixos teores de níquel e carbono. Este último e o tipo austenítico não podem ser temperados. O aço é atualmente a mais importante liga metálica, sendo empregue de forma intensiva em numerosas aplicações tais como máquinas, ferramentas, em construção, etc. Entretanto, a sua utilização está condicionada a determinadas aplicações devido a vantagens técnicas que oferecem outros materiais como o alumínio no transporte por sua maior leveza e na construção por sua maior resistência a corrosão, o cimento (mesmo combinado com o aço) pela sua maior resistência ao fogo e a cerâmica em aplicações que necessitem de elevadas temperaturas. Ainda assim, atualmente emprega-se o aço devido a sua nítida superioridade frente às demais ligas considerando-se o seu preço. Já que: * Existem numerosas jazidas de minerais de ferro suficientemente ricas, puras e fáceis de explorar, além da possibilidade de reciclar a sucata. * Os procedimentos de fabricação são relativamente simples e económicos, e são chamados de aciaria. Os aços podem ser fabricados por processo de aciaria eléctrica, onde se utiliza eléctrodos e processo de aciaria LD, onde se utiliza sopro de oxigénio no metal líquido por meio de uma lança. * Apresentam uma interessante combinação de propriedades mecânicas que podem ser modificados dentro de uma ampla faixa variando-se os componentes da liga e as suas quantidades, mediante a aplicação de tratamentos. * A sua plasticidade permite obter peças de formas geométricas complexas com relativa facilidade. * A experiência acumulada na sua utilização permite realizar previsões de seu comportamento, reduzindo custos de projetos e prazos de colocação no mercado. Tal é a importância industrial deste material que a sua metalurgia recebe a denominação especial de siderurgia, e a sua influência no desenvolvimento humano foi tão importante que uma parte da história da humanidade foi denominada Idade do Ferro, que se iniciou em 3500 a.C., e que, de certa forma, ainda perdura. (pt)
  • Сталь (от нем. Stahl) — сплав железа с углеродом (и другими элементами). Содержание углерода в стали от 0,1 до 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость. Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь). Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок. Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы, кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью. (ru)
  • 鋼或稱鋼鐵、鋼材,是一種由鐵與其他元素結合而成的合金,當中最普遍的是碳。碳約佔鋼材重量的0.2%至2.1%,視乎鋼材的等級。其他有時會用到的合金元素還包括錳、鉻、釩和鎢。碳與其他元素有硬化劑的作用,能夠防止鐵原子的晶格因原子滑移過其他原子而出現位錯。調整合金元素的量,及其存在與鋼中的形式(溶質元素及參與相),就能夠控制鋼成品的特性,例如硬度、延展性及強度。加了碳的鋼會比純鐵更硬更強,但是這種鋼的延展性會比鐵差。 含碳量高於2.1%的合金叫鑄鐵,因為這種合金的熔點較低,可鑄性強。鋼又跟熟鐵不同,熟鐵可以含有少量的碳,但這些碳雜質都是夾雜在鋼中的殘留熔渣。鋼有兩種跟鑄鐵和熟鐵不同的特性,就是鋼的耐鏽度較高,以及可焊度更佳。 儘管在文藝復興之前很久,人們已經懂得使用各種低效的方法來生產鋼,但是鋼的普及化要等到十七世紀,也就是有了更高效的生產法之後。自從在十九世紀發明了貝塞麥煉鋼法之後,鋼就成了一種可大量生產的廉價材料。後來煉鋼法經過更多的改進,例如碱性氧氣煉鋼,使得鋼的生產價格更低,但同時品質更好。時至今日,鋼已經成為世界上普遍的材質,年生產量達十三億噸。在各種建築、基礎設施、工具、船隻、汽車、機械、電器及武器中,鋼都是一種主要的成份。現代鋼鐵一般用各種標準化團體所制定的不同品質標準來區分。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 27058 (xsd:integer)
dbo:wikiPageRevisionID
  • 742978801 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • Un acier est un alliage métallique constitué principalement de fer et de carbone (dans des proportions comprises entre 0,02 % et 2 % en masse pour le carbone). C’est essentiellement la teneur en carbone qui confère à l’alliage les propriétés du métal qu’on appelle « acier ». Il existe d’autres métaux à base de fer qui ne sont pas des aciers comme les fontes et les ferroalliages par exemple. (fr)
  • 鋼(はがね、こう、釼は異体字、英: steel)とは、鉄の持つ性能(強度、磁性、耐熱性など)を高めた鉄合金を指す。 一般に鋼とは、0.3%〜2%の炭素を含んだ鉄合金の総称であるが、0.3%以下の炭素量でも、ステンレスや耐熱鋼などは鋼として扱われる。軟鉄や鋳鉄とあわせて鉄鋼(てっこう)とも呼ばれ、鋼でできた材料を鋼材、板状のものを鋼板と呼ぶ。日本語の「はがね」の由来は「刃金」である。20世紀後半には多くの新材料が発達したが、鋼は依然として産業上重要な位置を占めている。 (ja)
  • Acciaio è il nome dato a una lega composta principalmente da ferro e carbonio, quest'ultimo in percentuale non superiore al 2,11%: oltre tale limite, le proprietà del materiale cambiano e la lega assume la denominazione di ghisa. (it)
  • 鋼或稱鋼鐵、鋼材,是一種由鐵與其他元素結合而成的合金,當中最普遍的是碳。碳約佔鋼材重量的0.2%至2.1%,視乎鋼材的等級。其他有時會用到的合金元素還包括錳、鉻、釩和鎢。碳與其他元素有硬化劑的作用,能夠防止鐵原子的晶格因原子滑移過其他原子而出現位錯。調整合金元素的量,及其存在與鋼中的形式(溶質元素及參與相),就能夠控制鋼成品的特性,例如硬度、延展性及強度。加了碳的鋼會比純鐵更硬更強,但是這種鋼的延展性會比鐵差。 含碳量高於2.1%的合金叫鑄鐵,因為這種合金的熔點較低,可鑄性強。鋼又跟熟鐵不同,熟鐵可以含有少量的碳,但這些碳雜質都是夾雜在鋼中的殘留熔渣。鋼有兩種跟鑄鐵和熟鐵不同的特性,就是鋼的耐鏽度較高,以及可焊度更佳。 儘管在文藝復興之前很久,人們已經懂得使用各種低效的方法來生產鋼,但是鋼的普及化要等到十七世紀,也就是有了更高效的生產法之後。自從在十九世紀發明了貝塞麥煉鋼法之後,鋼就成了一種可大量生產的廉價材料。後來煉鋼法經過更多的改進,例如碱性氧氣煉鋼,使得鋼的生產價格更低,但同時品質更好。時至今日,鋼已經成為世界上普遍的材質,年生產量達十三億噸。在各種建築、基礎設施、工具、船隻、汽車、機械、電器及武器中,鋼都是一種主要的成份。現代鋼鐵一般用各種標準化團體所制定的不同品質標準來區分。 (zh)
  • Steel is an alloy of iron and other elements, primarily carbon, that is widely used in construction and other applications because of its high tensile strength and low cost. Steel's base metal is iron, which is able to take on two crystalline forms (allotropic forms), body centered cubic (BCC) and face centered cubic (FCC), depending on its temperature. It is the interaction of those allotropes with the alloying elements, primarily carbon, that gives steel and cast iron their range of unique properties. In the body-centred cubic arrangement, there is an iron atom in the centre of each cube, and in the face-centred cubic, there is one at the center of each of the six faces of the cube. Carbon, other elements, and inclusions within iron act as hardening agents that prevent the movement of di (en)
  • الصلب أو الفولاذ هو سبيكة من الحديد تحتوي على إضافات من الكربون تتراوح بين (0.2% - 2.0%) من وزن السبيكة حسب نوع السبيكة، وهو يعتبر العنصر المضاف الأساسي في سبائك الصلب. إذا زادت نسبة الكربون في الحديد عن 1و2 % يصبح هشا ويسمى في تلك الحالة حديد زهر. تحتوي سبائك الصلب على نسب من معادن أخرى مثل النيكل والكروم والفاناديوم والسيليكون والموليبدينيوم والفسفور والكبريت وغيرها من العناصر الأخرى. يقوم الكربون وعناصر أخرى بتقسية الصلب، ومنع طبقات الحديد في البنية البلورية من الانزلاق فوق بعضها البعض (الانخلاع). باختلاف العناصر المضافة لسبائك الصلب وشكل وجودها في الصلب (كعناصر ذائبة في المعدن أو كترسبات في المعدن)، تختلف خواص السبائك مثل الصلادة والمرونة ومقاومة السبيكة للشد في سبيكة الصلب الناتجة عن تلك الإضافات. (ar)
  • Als Stahl (aus ahd. stahel / stāl; auch in mnd. stāl, mnl. stael und an. stál; verwandt mit as. stehli ‚Axt‘ und ae. stīle; weitere Herkunft nicht gesichert) werden metallische Legierungen bezeichnet, deren Hauptbestandteil Eisen ist und die (im Unterschied zum Gusseisen) umformtechnisch verarbeitet werden können. Genauere Definitionen sind nicht einheitlich, einige sind durch die heutige Vielfalt an technischen Legierungen ungenau geworden. Häufig anzutreffen ist die Definition nach DIN EN 10020:2000–07, nach der der Kohlenstoffgehalt der Eisenlegierung im Allgemeinen kleiner als 2 % sein muss, mit Ausnahme einer begrenzten Anzahl an Chromstählen. (de)
  • El término acero sirve comúnmente para denominar, en ingeniería metalúrgica, a una mezcla de hierro con una cantidad de carbono variable entre el 0,03 % y el 2,14 % en masa de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,14 % se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas. (es)
  • Staal is een legering bestaand uit ijzer en koolstof. De term staal wordt met name gebruikt voor ijzerlegeringen met een zodanig beperkt koolstofgehalte (typisch minder dan 1,9%) of gehalte aan toevoegingen als chroom, dat ze warm vervormd kunnen worden. Hierin onderscheidt staal zich van bijvoorbeeld gietijzer, dat een hoger koolstofgehalte heeft. Wereldwijd wordt er jaarlijks ongeveer 1600 miljoen ton staal geproduceerd. (nl)
  • Stal – stop żelaza z węglem, plastycznie obrobiony i obrabialny cieplnie, o zawartości węgla nieprzekraczającej 2,14%, co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali stopowych zawartość węgla może być dużo wyższa). Węgiel w stali najczęściej występuje w postaci perlitu płytkowego. Niekiedy jednak, szczególnie przy większych zawartościach węgla, cementyt występuje w postaci kulkowej w otoczeniu ziaren ferrytu. (pl)
  • O aço é uma liga metálica formada essencialmente por ferro e carbono, com percentagens deste último variando entre 0,008 e 2,11%. Distingue-se do ferro fundido, que também é uma liga de ferro e carbono, mas com teor de carbono acima de 2,11%. O carbono é um material muito usado nas ligas de ferro, porém varia com o uso de outros elementos como: magnésio, cromo, vanádio e tungstênio. O carbono e outros elementos químicos agem com o agente de resistência, prevenindo o deslocamento em que um átomo de ferro em uma estrutura cristalina passa para outro. A diferença fundamental entre ambos é que o aço, pela sua ductibilidade, é facilmente deformável por forja, laminação e extrusão, enquanto que uma peça em ferro fundido é muito frágil.O aço pode ser classificado da seguinte maneira: (pt)
  • Сталь (от нем. Stahl) — сплав железа с углеродом (и другими элементами). Содержание углерода в стали от 0,1 до 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость. Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь). (ru)
rdfs:label
  • Steel (en)
  • صلب (سبيكة) (ar)
  • Stahl (de)
  • Acero (es)
  • Acier (fr)
  • Acciaio (it)
  • (ja)
  • Staal (legering) (nl)
  • Stal (pl)
  • Aço (pt)
  • Сталь (ru)
  • (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:album of
is dbo:constructionMaterial of
is dbo:division of
is dbo:field of
is dbo:industry of
is dbo:knownFor of
is dbo:location of
is dbo:occupation of
is dbo:product of
is dbo:service of
is dbo:structuralSystem of
is dbo:type of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:armour of
is dbp:bogies of
is dbp:buildingMaterials of
is dbp:carbody of
is dbp:cargo of
is dbp:chassis of
is dbp:composition of
is dbp:construction of
is dbp:foundation of
is dbp:industries of
is dbp:industry of
is dbp:material of
is dbp:materials of
is dbp:product of
is dbp:products of
is dbp:shipArmour of
is dbp:type of
is dbp:windshaft of
is http://purl.org/linguistics/gold/hypernym of
is rdfs:seeAlso of
is foaf:primaryTopic of