A star is a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the stars in the Universe, including all stars outside our galaxy, the Milky Way, are invisible to the naked eye from Earth. Indeed, most are invisible from Earth even through the most powerful telescopes.

Property Value
dbo:abstract
  • A star is a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the stars in the Universe, including all stars outside our galaxy, the Milky Way, are invisible to the naked eye from Earth. Indeed, most are invisible from Earth even through the most powerful telescopes. For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and then radiates into outer space. Almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime, and for some stars by supernova nucleosynthesis when it explodes. Near the end of its life, a star can also contain degenerate matter. Astronomers can determine the mass, age, metallicity (chemical composition), and many other properties of a star by observing its motion through space, its luminosity, and spectrum respectively. The total mass of a star is the main factor that determines its evolution and eventual fate. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram (H–R diagram). Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined. A star's life begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. When the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star's interior carries energy away from the core through a combination of radiative and convective heat transfer processes. The star's internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun's will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements at the core or in shells around the core. As the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole. Binary and multi-star systems consist of two or more stars that are gravitationally bound and generally move around each other in stable orbits. When two such stars have a relatively close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy. (en)
  • النجم هو عبارة عن جسم كروي من البلازما ضخم ولامع ومتماسك بفعل الجاذبية. يستمد النجم لمعانه من الطاقة النووية المتولدة فيه ؛ حيث تلتحم ذرات الهيدروجين مع بعضها البعض مكونة عناصر أثقل من الهيدروجين ، مثل الهيليوم و الليثيوم وباقي العناصر الخفيفة حتى عنصر الحديد . إن هذا التفاعل الفيزيائي يسمى اندماج نووي تنتج منهُ طاقة كبيرة (حرارة) جداً تصل إلينا في صورة أشعة الشمس. فتغمر الأرض بالدفء، وتكوّن عليها الظروف مناسبة للحياة. وأغلب مكونات النجم هو عنصر الهيدروجين المتأين والهيليوم المتأين (وهما يسميان في حالة التأين بلازما). وقد بينت الأرصاد الفلكية أن نسبة كبيرة من النجوم لها كواكب تدور حولها مثلما موجود في المجموعة الشمسية. أقرب نجم للأرض هو الشمس فهي مصدر الطاقة على الأرض. كما تصل طاقة الشمس إلى الكواكب الأخرى التي تشكل المجموعة الشمسية. وتكون بعض النجوم الأخرى واضحة أثناء الليل حينما لا تغطيها السحب أو ظواهر جوية أخرى وتظهر كنقاط كثيرة مضيئة بسبب بعدها الهائل عن الأرض. تاريخياً، تشكل النجوم في الكرة السماوية تجمعات تسمى كوكبات وأبراج. ولقد أعطى الإنسان منذ القدم لأشد النجوم لمعاناً أسماءا وكذلك للكوكبات والأبراج. واستدل بها العرب في معرفة طريقهم في الصحراء والملاحة في البحار والمحيطات. لهذا فإن معظم النجوم المتألقة لها أسماء أصولها عربية. ولقد جمع علماء الفلك فهرس شامل يحوي أسماء النجوم التي تهمنا - مثل فهرس مسييه وفهرس المجرات وعناقيد المجرات. وباختراع المقراب المتزايد القدرة نستطيع الآن رؤية نجوم ضعيفة التألق أو بعيدة، لم يستطع رؤيتها السابقون بالعين المجردة. يضيء النجم بسبب الاندماج النووي الحراري للهيدروجين إلى هيليوم في لُب النجم خلال جزء (على الأقل) من حياتهِ. مطلقاً بذلك الطاقة التي تخترق باطن النجم و يشعها في الفضاء الخارجي. وحالما يتم استنفاذ عنصر الهيدروجين من النجم، فإن جميع العناصر الناشئة من الاندماج النووي للهيدروجين تكون أثقل من الهيليوم الذي يتم أيضاً إنتاجه؛ إما عن طريق الاصطناع النووي النجمي خلال حياة النجم أو عن طريق الاصطناع النووي في المستعرّ الأعظم عندما تنفجر النجوم الضخمة جداً. ومع اقتراب نهاية حياته، يمكن أن يحتوي النجم على نسبة من المواد المتحللة. ويمكن للفلكيين تحديد الكتلة، والعمر، والتركيبة (التركيب الكيميائي)، والعديد من الخصائص الأخرى للنجم من خلال مراقبة حركته عبر الفضاء، عن طريق لمعانه، أو مراقبة الطيف الخاص بهِ على التوالي. والكتلة الاجمالية للنجم هي المحدد الرئيسي لتطوره ومصيره في نهاية المطاف. ويتم تحديد الخصائص الأخرى للنجم بواسطة تاريخهِ، بما في ذلك القطر، ودورانه، وحركته ودرجة حرارته. إذ ان جزء من درجة حرارة العديد من النجوم ضد لمعانها، والذي يعرف باسم مخطط هرتزشبرونج-راسل البياني يسمح بتحديد العمر والحالة التطورية للنجم. يبدأ تكون النجم كسحابة متساقطة من مواد سديمية تحتوي في المقام الأول على الهيدروجين، جنباً إلى جنب مع الهيليوم ومقدار ضئيل من عناصر أثقل. حالما يتكثف اللبّ النجمي فإن عنصر الهيدروجين يتحول بثبات إلى هليوم من خلال عملية الاندماج النووي، ومطلقا طاقة في هذه العملية. وما تبقى من باطن النجم يحمل الطاقة بعيداً عن اللب من خلال خليط من العمليات الإشعاعية والحملية. وضغط النجم الداخلي يمنعه من السقوط أكثر تحت جاذبيته. وحالما يتم استنفاد طاقة الهيدروجين في اللب، ويتكون النجم بكتلة لا تقل عن 0.4 مرة من كتلة الشمس ويتمدد ليصبح عملاق أحمر، وفي بعض الحالات يتم صهر عناصر أثقل في اللب أو في الطبقة الحامية حول اللب. ويتطور عندها النجم إلى شكل متحلل، معيداً تدوير جزء من جوهرهِ إلى بيئتهِ النجمية، حيث أنه سيكون جيل جديد من النجوم ذات نسبة أكبر من العناصر الثقيلة. في هذه الاثناء فإن اللب يصبح بقايا نجم: قزم أبيض أو نجم نيتروني أو (اذا كان ضخم بما فيه الكفاية) ثقب أسود. تتكون النظم الثنائية والمتعددة النجوم من اثنين أو أكثر من النجوم المحدودة الجاذبية، والتي تتحرك عموماً حول بعضها البعض في مدارات مستقرة. وعندما لا يكون لدى اثنين من هذه النجوم مدار قريب نسبياً، فإن تفاعل الجاذبية لهُ تأثير كبير على تطورها في نشوء هياكل ذات جاذبية أضخم مثل العناقيد النجمية والمجرات. (ar)
  • Una estrella (del latín stella) es una esfera luminosa de plasma que mantiene su forma gracias a un equilibrio hidrostático de fuerzas y a su propia gravedad. El equilibrio se produce esencialmente entre la fuerza de la gravedad, que empuja la materia hacia el centro de la estrella, y la presión que ejerce el plasma hacia fuera, que, tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el del Sol se mantiene con la energía producida en el interior de la estrella. La estrella más cercana a la Tierra es el Sol. Otras estrellas son visibles a simple vista desde la Tierra durante la noche, apareciendo como una diversidad de puntos luminosos fijos en el cielo debido a su inmensa distancia de la Tierra. Históricamente, las estrellas más prominentes fueron agrupadas en constelaciones y asterismos, y las estrellas más brillantes ganaron nombres propios. Un extensivo catálogo ha sido compilado por los astrónomos, proporcionando designaciones estandarizadas a las estrellas. Por lo que se refiere a la duración de su vida, una estrella brilla debido a la fusión termonuclear del hidrógeno en helio en su núcleo, liberando energía que atraviesa el interior de la estrella y después se irradia hacia el espacio exterior. Cuando el hidrógeno en el núcleo de una estrella está casi agotado, casi todos los elementos más pesados que el helio producidos de forma natural son creados por nucleosíntesis estelar durante la vida de la estrella y, en algunas estrellas, por nucleosíntesis de supernovas cuando explotan. Al finalizar su vida, una estrella también puede contener materia degenerada. Los astrónomos pueden determinar la masa, edad, metalicidad (composición química), y muchas otras propiedades de una estrella mediante la observación de su movimiento a través del espacio, su luminosidad y espectro, respectivamente. La masa total de una estrella es el principal determinante de su evolución y destino final. Otras características de una estrella, incluyendo el diámetro y la temperatura, cambian a lo largo de su vida, mientras que el entorno de una estrella afecta a su rotación y movimiento. Una gráfica de dispersión de muchas estrellas que hace referencia a su luminosidad, magnitud absoluta, temperatura superficial y tipo espectral, conocido como el diagrama de Hertzsprung-Russell (Diagrama H-R), permite determinar la edad y el estado evolutivo de una estrella. La vida de una estrella comienza con el colapso gravitacional de una nebulosa gaseosa de material compuesto principalmente de hidrógeno, junto con helio y trazas de elementos más pesados. Cuando el núcleo estelar es suficientemente denso, el hidrógeno comienza a convertirse en helio a través de la fusión nuclear, liberando energía durante el proceso. Los restos del interior de la estrella portan la energía fuera del núcleo a través de una serie combinatoria de procesos de radiación y convección. La presión interna de la estrella evita colapsarse aún más bajo su propia gravedad. Cuando se agota el combustible de hidrógeno en el núcleo, una estrella con al menos 0,4 veces la masa del Sol se expande hasta convertirse en una gigante roja, en algunos casos fusionando elementos más pesados en el núcleo o en capas externas alrededor del núcleo (como el carbono o el oxígeno). La estrella entonces evoluciona hasta una forma degenerada, reciclando una porción de su materia en el medio interestelar, donde contribuirá a la formación de una nueva generación de estrellas con una mayor proporción de elementos más pesados. Mientras tanto, el núcleo se convierte en un remanente estelar: una enana blanca, una estrella de neutrones, o (si es lo suficientemente masiva) un agujero negro. Los sistema binarios y multi-binarios consisten de dos o más estrellas que están unidas gravitacionalmente entre sí, y por lo general se mueven una alrededor de la otra en órbitas estables. Cuando dos estrellas poseen una órbita relativamente cercana, su interacción gravitatoria puede tener un impacto significativo en su evolución. Las estrellas pueden formar parte de estructuras unidas gravitacionalmente entre sí mucho más grandes, tal como un cúmulo estelar o una galaxia. (es)
  • Une étoile est un corps céleste gazeux qui rayonne sa propre lumière par réactions de fusion nucléaire, ou des corps qui ont été dans cet état à un stade de leur cycle de vie, comme les naines blanches ou les étoiles à neutrons. Cela signifie qu'elles doivent posséder une masse minimale pour que les conditions de température et de pression au sein de la région centrale — le — permettent l'amorce et le maintien de ces réactions nucléaires, seuil en deçà duquel on parle d'objets substellaires. Les masses possibles des étoiles s'étendent de 0,085 masse solaire à une centaine de masses solaires. La masse détermine la température et la luminosité de l'étoile. La plupart des étoiles se situent sur la séquence principale du diagramme de Hertzsprung-Russell, où les étoiles produisent leur énergie et leur rayonnement par conversion de l'hydrogène en hélium, par des mécanismes de fusion nucléaire comme le cycle carbone-azote-oxygène ou la chaîne proton-proton. Pendant une grande partie de son existence, une étoile est en équilibre hydrostatique sous l'action de deux forces qui s'opposent : la gravitation, qui tend à contracter et faire s'effondrer l'étoile, et la pression cinétique (avec la pression de radiation pour les étoiles massives), régulée et maintenue par les réactions de fusion nucléaire, qui tend au contraire à dilater l'astre. À la fin de cette phase, marquée par la consommation de la totalité de l'hydrogène, les étoiles de la séquence principale se dilatent et évoluent en étoile géante qui obtient son énergie d'autres réactions nucléaires, comme la fusion de l'hélium en carbone et oxygène. Une étoile rayonne dans tout le spectre électromagnétique, au contraire de la plupart des planètes (comme la Terre) qui reçoivent principalement l'énergie de l'étoile ou des étoiles autour desquelles elles gravitent. Le Soleil est une étoile assez typique dont la masse, de l'ordre de 2×1030 kg, est représentative de celle des autres étoiles. (fr)
  • Unter einem Stern (lateinisch stella und astrum, ahd. sterno; Astronomisches Symbol: ✱) versteht die Astronomie einen massereichen, selbstleuchtenden Himmelskörper aus sehr heißem Gas und Plasma, ähnlich der Sonne. Er wird durch die eigene Schwerkraft zusammengehalten und ist an der Oberfläche 2.200 K bis 45.000 K heiß. Weiße Zwerge können Temperaturen bis zu 100.000 K erreichen. Dass fast alle dem bloßen Auge punktförmig erscheinenden Himmelskörper weit entfernte Sonnen sind, ist eine der wichtigsten Erkenntnisse der modernen Astronomie. Über 70 Prozent der Sterne sind Teil eines Doppelstern- oder Mehrfachsystems, viele haben ein Planetensystem. In größerer Zahl bilden sie Sternhaufen (in denen meist die Sternentstehung stattfindet) und riesige, linsenförmige Galaxien. Sterne kommen in unterschiedlichsten Größen, Leuchtkräften und Farben vor und werden daher nach bestimmten Eigenschaften klassifiziert. Sie sind äußerst aktive Gasriesen, die im Innern Millionen Grad heiß und sehr turbulent sind. Von ihrer glühenden Oberfläche senden sie neben intensiver Strahlung auch geladene Plasmateilchen weit in den Raum und bilden eine Astrosphäre (siehe Heliosphäre der Sonne). Sterne und ihre Eigenschaften sind auch bei der Frage von großer Bedeutung, ob ein sie umkreisender Planet Leben tragen könnte oder nicht (siehe Habitable Zone). (de)
  • Una stella è un corpo celeste che brilla di luce propria. In astronomia e astrofisica il termine indica uno sferoide luminoso di plasma che genera energia nel proprio nucleo attraverso processi di fusione nucleare; tale energia è irradiata nello spazio sotto forma di radiazione elettromagnetica, flusso di particelle elementari (vento stellare) e neutrini. Buona parte degli elementi chimici più pesanti dell'idrogeno e dell'elio (i più abbondanti nell'Universo) vengono sintetizzati nei nuclei delle stelle tramite il processo di nucleosintesi. La stella più vicina alla Terra è il Sole, sorgente di gran parte dell'energia del nostro pianeta. Le altre stelle, ad eccezione di alcune supernovae, sono visibili solamente durante la notte come dei puntini luminosi, che appaiono tremolanti a causa degli effetti distorsivi (seeing) operati dall'atmosfera terrestre. Le stelle sono oggetti dotati di una massa considerevole, compresa tra 0,08 e 150–200 masse solari (M☉). Gli oggetti con una massa inferiore a 0,08 M☉ sono detti nane brune, corpi a metà strada tra stelle e pianeti che non producono energia tramite la fusione nucleare, mentre non sembrano esistere, almeno apparentemente, stelle di massa superiore a 200 M☉, per via del limite di Eddington. Sono variabili anche le dimensioni, comprese tra i pochi km delle stelle degeneri e i miliardi di km delle supergiganti e ipergiganti, e le luminosità, comprese tra 10−4 e 106 - 107 luminosità solari (L☉). Le stelle si presentano, oltre che singolarmente, anche in sistemi costituiti da due (stelle binarie) o più componenti (sistemi multipli), legate dalla forza di gravità. Un buon numero di stelle convive in associazioni o ammassi stellari (suddivisi in aperti e globulari), a loro volta raggruppati, insieme a stelle singole e nubi di gas e polveri, in addensamenti ancora più estesi, che prendono il nome di galassie. Numerose stelle possiedono inoltre uno stuolo più o meno ampio di pianeti. Nel corso della storia numerosi filosofi, poeti, scrittori e musicisti si sono ispirati al cielo stellato per la realizzazione delle loro opere e, in diversi casi, si sono interessati direttamente allo studio dell'astronomia. (it)
  • 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。 (ja)
  • Een ster is een bolvormig hemellichaam, bestaande uit lichtgevend plasma. In sterren is de druk en temperatuur van de inwendige gasconcentratie zo hoog dat er kernfusiereacties plaatsvinden. Daarbij wordt een enorme hoeveelheid energie geproduceerd die door de ster wordt uitgezonden als elektromagnetische straling in verschillende golflengten, waaronder zichtbaar licht. Ook de eindstadia van sterren, de witte dwergen en neutronensterren, waarin de kernfusie tot een einde is gekomen, worden tot de sterren gerekend. De dichtstbijzijnde ster is voor ons de Zon. Daarna volgt Proxima Centauri. (nl)
  • Gwiazda – kuliste ciało niebieskie stanowiące skupisko powiązanej grawitacyjnie materii w stanie plazmy bądź zdegenerowanej. Przynajmniej przez część swojego istnienia gwiazda w sposób stabilny emituje powstającą w jej jądrze w wyniku procesów syntezy jądrowej atomów wodoru energię w postaci promieniowania elektromagnetycznego, w szczególności światło widzialne. Gwiazdy zbudowane są głównie z wodoru i helu, prawie wszystkie atomy innych cięższych pierwiastków znajdujące się we Wszechświecie powstały w efekcie zachodzących w nich przemian jądrowych lub podczas wieńczących ich istnienie wybuchów. Gwiazda powstaje wskutek kolapsu obłoku molekularnego – chmury materii złożonej w większości z wodoru, a także helu oraz śladowych ilości cięższych pierwiastków. Gdy jądro gwiazdy osiągnie dostatecznie dużą gęstość, rozpoczyna się proces stopniowej zamiany składającego się nań wodoru w hel na drodze stabilnych reakcji fuzji jądrowej. Pozostała część materii gwiazdy przenosi energię wyzwalaną w tym procesie z jądra w przestrzeń kosmiczną za pomocą procesów transportu promieniowania oraz konwekcji. Powstałe w ten sposób ciśnienie wewnętrzne zapobiega dalszemu zapadaniu się tworzącej gwiazdę materii pod wpływem grawitacji. Gdy wodór w jądrze ulegnie wyczerpaniu, gwiazdy o masie równej przynajmniej 0,4 masy Słońca znacznie się powiększają i ulegają przeobrażeniu w czerwone olbrzymy, które w niektórych przypadkach zdolne są spalać cięższe pierwiastki bezpośrednio w jądrze bądź w powłokach je otaczających. Gwiazda rozpoczyna wtedy ewolucję do formy zdegenerowanej, zwracając część swojej materii składowej w przestrzeń, gdzie utworzy ona kolejne pokolenie gwiazd o większej zawartości ciężkich pierwiastków. Astronomowie mogą ustalić masę, wiek, skład chemiczny oraz wiele innych cech gwiazdy, badając jej spektrum, jasność oraz drogę, jaką przebywa w przestrzeni kosmicznej. Masa gwiazdy stanowi główną determinantę procesu jej ewolucji oraz sposobu, w jaki zakończy ona swe życie. Inne parametry gwiazdy, takie jak średnica, prędkość obrotu wokół własnej osi, sposób poruszania się oraz temperatura, określa się na podstawie jej dotychczasowej ewolucji. Wykres zależności pomiędzy temperaturami gwiazd a ich jasnością nosi nazwę diagramu Hertzsprunga-Russella (H-R) i pozwala oszacować wiek gwiazdy oraz określić stadium życia, w którym się ona znajduje. Z wyjątkiem najbliższej naszej planecie gwiazdy – Słońca – oraz niektórych supernowych, gwiazdy można obserwować z powierzchni Ziemi jedynie na nocnym niebie, gdyż wtedy nie przyćmiewa ich Słońce. Najlepiej widocznym na sferze niebieskiej gwiazdom od dawna nadawano różne nazwy, łączono je także w gwiazdozbiory. Astronomowie pogrupowali gwiazdy oraz inne ciała niebieskie w katalogi astronomiczne, które zapewniają ujednolicone nazewnictwo tych obiektów. Wiele gwiazd, choć nie większość, jest związanych grawitacyjnie z innymi, tworząc układy podwójne lub wieloskładnikowe układy gwiazd, w których owe ciała niebieskie poruszają się wokół siebie po w miarę stabilnych orbitach. W ciasnych układach podwójnych, gdzie dwie gwiazdy krążą w małej odległości, ich wzajemne oddziaływanie może istotnie wpływać na przebieg procesów ich ewolucji. Gwiazdy nie są jednorodnie rozrzucone we Wszechświecie, lecz wchodzą w skład dużych struktur utrzymywanych dzięki sile grawitacji, takich jak gromady czy galaktyki. Rozgwieżdżone niebo inspirowało prace wielu poetów, pisarzy, filozofów oraz muzyków, niejednokrotnie bezpośrednio angażowali się oni w prowadzenie badań astronomicznych. (pl)
  • Uma estrela é uma grande e luminosa esfera de plasma, mantida íntegra pela gravidade e pela pressão de radiação. Ao fim de sua vida, uma estrela pode conter também uma proporção de matéria degenerada. A estrela mais próxima da Terra é o Sol, que é a fonte da maior parte da energia do planeta. Outras estrelas são visíveis da Terra durante a noite, quando não são ofuscadas pela luz do Sol ou bloqueadas por fenômenos atmosféricos. Historicamente, as estrelas mais importantes da esfera celeste foram agrupadas em constelações e asterismos, e as estrelas mais brilhantes ganharam nomes próprios. Extensos catálogos de estrelas foram compostos pelos astrônomos, o que permite a existência de designações padronizadas. Pelo menos durante uma parte da sua vida, uma estrela brilha devido à fusão nuclear do hidrogênio no seu núcleo, liberando energia que atravessa o interior da estrela e irradia para o espaço sideral. Quase todos os elementos que ocorrem na natureza mais pesados que o hélio foram criados por estrelas, seja pela nucleossíntese estelar durante as suas vidas ou pela nucleossíntese de supernova quando as estrelas explodem. Os astrônomos podem determinar a massa, idade, composição química e muitas outras propriedades de uma estrela observando o seu espectro, luminosidade e movimento no espaço. A massa total de uma estrela é o principal determinante da sua evolução e possível destino. Outras características de uma estrela são determinadas pela história da sua evolução, inclusive o diâmetro, rotação, movimento e temperatura. Um diagrama da temperatura de muitas estrelas contra suas luminosidades, conhecido como Diagrama de Hertzsprung-Russell (Diagrama H-R), permite determinar a idade e o estado evolucionário de uma estrela. Uma estrela se forma pelo colapso de uma nuvem de material composta principalmente de hidrogênio e traços de elementos mais pesados. Uma vez que o núcleo estelar seja suficientemente denso, parte do hidrogênio é gradativamente convertido em hélio pelo processo de fusão nuclear. O restante do interior da estrela transporta a energia a partir do núcleo por uma combinação de processos radiantes e convectivos. A pressão interna da estrela impede que ela colapse devido a sua própria gravidade. Quando o combustível do núcleo (hidrogênio) se exaure, as estrelas que possuem pelo menos 40% da massa do Sol se expandem para se tornarem gigantes vermelhas, em alguns casos fundindo elementos mais pesados no núcleo ou em camadas em torno do núcleo. A estrela então evolui para uma forma degenerada, reciclando parte do material para o ambiente interestelar, onde será formada uma nova geração de estrelas com uma maior proporção de elementos pesados. Sistemas binários e multiestelares consistem de duas ou mais estrelas que estão gravitacionalmente ligadas, movendo-se umas em torno das outras em órbitas estáveis. Quando duas dessas estrelas estão em órbitas relativamente próximas, sua interação gravitacional pode causar um impacto significativo na sua evolução. As estrelas podem ser parte de uma estrutura de relacionamento gravitacional muito maior, como um aglomerado ou uma galáxia. (pt)
  • 恆星是由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其貫穿間的運動、亮度和光譜,確知一顆恆星的質量、年齡、化學元素的豐度,和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命開始於主要由氫、氦,還有其它可察覺的微量重元素組成的氣體雲引力坍縮。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量,恆星就生成了。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。 恆星不是星球 (zh)
  • Звезда́ — массивный газовый шар, излучающий свет и удерживаемый силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза. Ближайшей к Земле звездой является Солнце — типичный представитель спектрального класса G. Звёзды образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость. Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года (4,2 св. лет = 39 Пм = 39 триллионов км = 3,9·1013 км) от центра Солнечной системы (см. также Список ближайших звёзд). Невооружённым взглядом (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. За исключением сверхновых, все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 26808 (xsd:integer)
dbo:wikiPageRevisionID
  • 744864545 (xsd:integer)
dbp:align
  • right
dbp:caption
  • Overview of the proton-proton chain
  • The carbon-nitrogen-oxygen cycle
dbp:colwidth
  • 30 (xsd:integer)
dbp:direction
  • vertical
dbp:image
  • CNO Cycle.svg
  • FusionintheSun.svg
dbp:width
  • 200 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。 (ja)
  • Een ster is een bolvormig hemellichaam, bestaande uit lichtgevend plasma. In sterren is de druk en temperatuur van de inwendige gasconcentratie zo hoog dat er kernfusiereacties plaatsvinden. Daarbij wordt een enorme hoeveelheid energie geproduceerd die door de ster wordt uitgezonden als elektromagnetische straling in verschillende golflengten, waaronder zichtbaar licht. Ook de eindstadia van sterren, de witte dwergen en neutronensterren, waarin de kernfusie tot een einde is gekomen, worden tot de sterren gerekend. De dichtstbijzijnde ster is voor ons de Zon. Daarna volgt Proxima Centauri. (nl)
  • A star is a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the stars in the Universe, including all stars outside our galaxy, the Milky Way, are invisible to the naked eye from Earth. Indeed, most are invisible from Earth even through the most powerful telescopes. (en)
  • النجم هو عبارة عن جسم كروي من البلازما ضخم ولامع ومتماسك بفعل الجاذبية. يستمد النجم لمعانه من الطاقة النووية المتولدة فيه ؛ حيث تلتحم ذرات الهيدروجين مع بعضها البعض مكونة عناصر أثقل من الهيدروجين ، مثل الهيليوم و الليثيوم وباقي العناصر الخفيفة حتى عنصر الحديد . إن هذا التفاعل الفيزيائي يسمى اندماج نووي تنتج منهُ طاقة كبيرة (حرارة) جداً تصل إلينا في صورة أشعة الشمس. فتغمر الأرض بالدفء، وتكوّن عليها الظروف مناسبة للحياة. وأغلب مكونات النجم هو عنصر الهيدروجين المتأين والهيليوم المتأين (وهما يسميان في حالة التأين بلازما). وقد بينت الأرصاد الفلكية أن نسبة كبيرة من النجوم لها كواكب تدور حولها مثلما موجود في المجموعة الشمسية. (ar)
  • Una estrella (del latín stella) es una esfera luminosa de plasma que mantiene su forma gracias a un equilibrio hidrostático de fuerzas y a su propia gravedad. El equilibrio se produce esencialmente entre la fuerza de la gravedad, que empuja la materia hacia el centro de la estrella, y la presión que ejerce el plasma hacia fuera, que, tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el del Sol se mantiene con la energía producida en el interior de la estrella. La estrella más cercana a la Tierra es el Sol. Otras estrellas son visibles a simple vista desde la Tierra durante la noche, apareciendo como una diversidad de puntos luminosos fijos en el cielo debido a su inmensa distancia de la Tierra. Históricamente, las e (es)
  • Unter einem Stern (lateinisch stella und astrum, ahd. sterno; Astronomisches Symbol: ✱) versteht die Astronomie einen massereichen, selbstleuchtenden Himmelskörper aus sehr heißem Gas und Plasma, ähnlich der Sonne. Er wird durch die eigene Schwerkraft zusammengehalten und ist an der Oberfläche 2.200 K bis 45.000 K heiß. Weiße Zwerge können Temperaturen bis zu 100.000 K erreichen. Dass fast alle dem bloßen Auge punktförmig erscheinenden Himmelskörper weit entfernte Sonnen sind, ist eine der wichtigsten Erkenntnisse der modernen Astronomie. (de)
  • Une étoile est un corps céleste gazeux qui rayonne sa propre lumière par réactions de fusion nucléaire, ou des corps qui ont été dans cet état à un stade de leur cycle de vie, comme les naines blanches ou les étoiles à neutrons. Cela signifie qu'elles doivent posséder une masse minimale pour que les conditions de température et de pression au sein de la région centrale — le — permettent l'amorce et le maintien de ces réactions nucléaires, seuil en deçà duquel on parle d'objets substellaires. Les masses possibles des étoiles s'étendent de 0,085 masse solaire à une centaine de masses solaires. La masse détermine la température et la luminosité de l'étoile. (fr)
  • Una stella è un corpo celeste che brilla di luce propria. In astronomia e astrofisica il termine indica uno sferoide luminoso di plasma che genera energia nel proprio nucleo attraverso processi di fusione nucleare; tale energia è irradiata nello spazio sotto forma di radiazione elettromagnetica, flusso di particelle elementari (vento stellare) e neutrini. Buona parte degli elementi chimici più pesanti dell'idrogeno e dell'elio (i più abbondanti nell'Universo) vengono sintetizzati nei nuclei delle stelle tramite il processo di nucleosintesi. (it)
  • Gwiazda – kuliste ciało niebieskie stanowiące skupisko powiązanej grawitacyjnie materii w stanie plazmy bądź zdegenerowanej. Przynajmniej przez część swojego istnienia gwiazda w sposób stabilny emituje powstającą w jej jądrze w wyniku procesów syntezy jądrowej atomów wodoru energię w postaci promieniowania elektromagnetycznego, w szczególności światło widzialne. Gwiazdy zbudowane są głównie z wodoru i helu, prawie wszystkie atomy innych cięższych pierwiastków znajdujące się we Wszechświecie powstały w efekcie zachodzących w nich przemian jądrowych lub podczas wieńczących ich istnienie wybuchów. (pl)
  • Uma estrela é uma grande e luminosa esfera de plasma, mantida íntegra pela gravidade e pela pressão de radiação. Ao fim de sua vida, uma estrela pode conter também uma proporção de matéria degenerada. A estrela mais próxima da Terra é o Sol, que é a fonte da maior parte da energia do planeta. Outras estrelas são visíveis da Terra durante a noite, quando não são ofuscadas pela luz do Sol ou bloqueadas por fenômenos atmosféricos. Historicamente, as estrelas mais importantes da esfera celeste foram agrupadas em constelações e asterismos, e as estrelas mais brilhantes ganharam nomes próprios. Extensos catálogos de estrelas foram compostos pelos astrônomos, o que permite a existência de designações padronizadas. (pt)
  • 恆星是由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其貫穿間的運動、亮度和光譜,確知一顆恆星的質量、年齡、化學元素的豐度,和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星不是星球 (zh)
  • Звезда́ — массивный газовый шар, излучающий свет и удерживаемый силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза. Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года (4,2 св. лет = 39 Пм = 39 триллионов км = 3,9·1013 км) от центра Солнечной системы (см. также Список ближайших звёзд). (ru)
rdfs:label
  • Stern (de)
  • 恒星 (ja)
  • Star (en)
  • نجم (جسم فلكي) (ar)
  • Estrella (es)
  • Étoile (fr)
  • Stella (it)
  • Ster (hemellichaam) (nl)
  • Gwiazda (pl)
  • Estrela (pt)
  • Звезда (ru)
  • 恒星 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:classes of
is dbp:mascot of
is dbp:symbol of
is http://purl.org/linguistics/gold/hypernym of
is foaf:primaryTopic of