A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules from their characteristic spectral lines. These "fingerprints" can be compared to the previously collected "fingerprints" of atoms and molecules, and are thus used to identify the atomic and molecular components of stars and planets which would otherwise be impossible.

Property Value
dbo:abstract
  • A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules from their characteristic spectral lines. These "fingerprints" can be compared to the previously collected "fingerprints" of atoms and molecules, and are thus used to identify the atomic and molecular components of stars and planets which would otherwise be impossible. (en)
  • Als Spektrallinien oder Resonanzlinien bezeichnet man voneinander scharf getrennte Linien eines Spektrums emittierter (Emissionslinien) oder absorbierter (Absorptionslinien) elektromagnetischer Wellen, im engeren Sinne innerhalb des Wellenlängenbereichs des sichtbaren Lichts (Lichtspektrum). Spektrallinien werden durch Wellenlänge, Linienintensität und Linienbreite charakterisiert. Die Ursache der Spektrallinien sind die durch Licht angeregten elektronischen Übergänge in Atomen oder Molekülen. Spektrallinien treten bei der instrumentellen Atomspektroskopie (wie beispielsweise Kernresonanzspektroskopie) oder der Flammenfärbung auf. Sie werden unter anderem in der Astronomie zur Analyse der molekularen Struktur von Sternen und Planeten verwendet, die sonst unmöglich wäre. Sie wurden bei der Brechung des Lichts der Sonne durch ein Prisma im 19. Jahrhundert entdeckt, woraus sich dann Spektroskope entwickelten, mit denen ein weites Feld von Anwendungsmöglichkeiten für die Spektralanalyse entstand. (de)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) خط الطيف (بالإنجليزية: Spectral line) هو خط داكن أو ساطع في طيف . يتكون طيف الشمس مثلا أو طيف نجم عن رؤيته وتحليلة تحليلا طيفيا من مجموعات خطوط متوازية متعاقبة تبدأ بلون الضوء الأحمر فالبرتقالي فالأصفر إلى الأخضر والأزرق إلى البنفسجي . تلك هي خطوط الطيف المرئي ، وكل منها لها طول موجة معينة ، تعتمد على نوع العنصر الذي يبعثها . فإذا شاهدنا طيف الشمس وقمنا بتحليله وجدنا أن معظم خطوط طيفه تنتمي إلى انبعاثات ضوئية من الهيدروجين وقليل من الخطوط تحمل "بصمة " غاز الهيليوم ، وهما المكونان الرئيسان للشمس. من هنا اكتسبت طريقة المطيافية طريقة لفهم مكونات النجوم والشموس والمجرات ، وهي تساعد علماء الفلك على استنباط مكونات تلك الأجرام عن طريق تحليل ما يأتي إلينا منها من ضوء. كذلك المطيافية المستخدمة معمليا تساعد الكيميائي والفيزيائي على استنباط خواص العناصر والمركبات ، وتستخدم أيضا في تحليل المركبات وغيرها. (ar)
  • Una línea espectral es una línea oscura o brillante en un espectro uniforme y continuo, resultado de un exceso o una carencia de fotones en un estrecho rango de frecuencias, comparado con las frecuencias cercanas. Cuando existe un exceso de fotones se habla de una línea de emisión. En el caso de existir una carencia de fotones, se habla de una línea de absorción. El estudio de las líneas espectrales permite realizar un análisis químico de cuerpos lejanos, siendo la espectroscopia uno de los métodos fundamentales usados en la astrofísica, aunque es utilizada también en el estudio de la Tierra. (es)
  • Une raie spectrale est une ligne sombre ou lumineuse dans un spectre électromagnétique autrement uniforme et continu.Les raies spectrales sont le résultat de l'interaction entre un système quantique (généralement des atomes, mais parfois aussi des molécules ou des noyaux atomiques) et le rayonnement électromagnétique. (fr)
  • Una linea spettrale è una linea scura o chiara in uno spettro altrimenti uniforme e continuo, è la conseguenza di un assorbimento o emissione di fotoni in una stretta gamma di frequenza. (it)
  • Een spectraallijn is een emissielijn of een absorptielijn die correspondeert met respectievelijk het uitzenden of absorberen van een golflengte binnen het elektromagnetisch spectrum door een stralingsbron. (nl)
  • スペクトル線(英: Spectral line)とは、他の領域では一様で連続な光スペクトル上に現れる暗線または輝線である。狭い周波数領域における光子数が、隣接周波数帯に比べ少ない、あるいは多いために生じる。 (ja)
  • Linia spektralna – ciemna lub jasna linia w jednolitym, ciągłym widmie, powstającą wskutek nadmiaru lub deficytu fotonów (w porównaniu z pobliskimi częstotliwościami) w wąskim zakresie częstotliwości. Linie spektralne są wynikiem oddziaływania pomiędzy układem kwantowym (zazwyczaj atomy, ale czasami też molekuły i jądra atomowe) i fotonami. Kiedy foton ma dokładnie taką energię, by zmienić energetyczny stan układu (w przypadku atomu jest to zazwyczaj zmiana orbity przez elektron), zostaje zaabsorbowany. Wzbudzony pochłonięciem energii układ może wyemitować foton. Emitowany (re-emitowany) foton może mieć taką samą częstotliwość lub może być ona inna. Układ może być też wzbudzony poprzez dostarczenie energii w wyniku zderzeń elementów układu (np. atomów). Gdy światło przechodzi przez niepobudzony układ (np. chłodny gaz), w zależności od geometrii gazu, źródła fotonów i obserwatora w obserwowanym widmie można zaobserwować linie emisyjne lub linie absorpcyjne. Jeżeli gaz znajduje się pomiędzy źródłem fotonów i obserwatorem, w wyniku pochłaniania zostanie zaobserwowany spadek w natężeniu światła w częstotliwościach, w których fotony mogą być pochłaniane, jako że re-emitowane fotony będą poruszały się w innych kierunkach niż pierwotne fotony ze źródła. Wtedy powstanie linia absorpcyjna. Jeśli obserwator patrzy na taki gaz, ale bez widzenia źródła fotonów, zobaczy on tylko re-emitowane fotony w wąskim paśmie częstotliwości, i wtedy zaobserwuje linie emisyjne. W klasycznym eksperymencie Newtona, kiedy światło jest przepuszczane przez szczelinę, a potem przez pryzmat, z powodu zależności współczynnik załamania od długości fali (zjawisko nazywane dyspersją w szkle), każda z długości fali jest załamywana w innym kierunku i pierwotne światło rozbija się we wstęgę tęczy. W wyniku tego powstaje oddzielny obraz szczeliny dla każdej długości fali. Kiedy jest badane światło pochodzące od płomienia, zamiast pełnej gamy kolorów otrzymuje się wąskie linie, gdzie każdy z kolorów jest wyodrębniony – są to linie emisyjne. Każdy pierwiastek ma swój specyficzny zestaw linii i stąd narodziła się dziedzina zwana spektroskopią. Wiele pierwiastków zostało wpierw odkrytych dzięki swoim charakterystycznym liniom emisyjnym: hel, tal, cer itd. Powód dla którego pierwiastki mają ściśle określony zestaw linii, został po raz pierwszy wytłumaczony przez model atomu Bohra. Kiedy elektrony zmieniają swoją orbitę na mniej energetyczną, różnica energii jest wysyłana jako foton o dokładnie określonej częstotliwości. Dla prostych źródeł światła, stany energetyczne są ściśle określone, jak i częstotliwości obserwowanego światła. Linie absorpcyjne i emisyjne są zależne od rodzaju atomów wytwarzających je i dlatego mogą być łatwo użyte do badania składu chemicznego dowolnej substancji zdolnej do przepuszczania przez siebie światło. W ten sam sposób można badać skład chemiczny gwiazd i innych ciał niebieskich. Linie spektralne są także silnie zależne od fizycznych własności gazu, co również jest wykorzystywane w astronomii. Pionierem takich badań był Joseph von Fraunhofer, od jego nazwiska linie absorpcyjne nazywane bywają liniami Fraunhofera. Istnieją także inne mechanizmy, kiedy oddziaływanie atomu z fotonem może wytworzyć linię spektralną. W zależności od określonego, fizycznego oddziaływania częstotliwość zaangażowanych fotonów będzie się szeroko wahać i linia będzie obserwowana przez całe widmo, od fal radiowych do promieniowania gamma. Linia rozszerza się na pewien zakres częstotliwości, zamiast pojawić się tylko dla jednej, konkretnej. Powody tego poszerzania są różne: * Naturalne poszerzenie: przede wszystkim łączy przebywanie w stanie wzbudzonym z dokładną energią, tak że ten sam stan wzbudzony będzie się nieznacznie różnił energetycznie dla różnych atomów. * Poszerzenie dopplerowskie: Atomy będą miały różne prędkości, więc będą widziały fotony przesunięte w czerwoną lub niebieską stronę widma, absorbując fotony o różnych energiach z punktu widzenia obserwatora. Im wyższa temperatura gazu, tym większe są różnice w prędkościach i większe poszerzenie linii. * Poszerzenie wskutek ciśnienia: Oddziaływanie z innymi atomami przesuwa energię poziomów energetycznych, które są odpowiedzialne za powstawanie linii. Efekt zależy od gęstości gazu. (pl)
  • Raia espectral, risca espetral ou linha espectral é o resultado de uma transição quântica que pode ser observado macroscopicamente. Estas linhas se apresentam, como revelações em algum tipo de material, e são a maneira mais simples de se detectar as transições quânticas. Quando uma transição entre níveis de energia ocorre em uma determinada amostra, ela emite ou absorve radiação eletromagnética em frequências discretas características. Onde essa radiação incide sobre a chapa reveladora, a cor da mesma é mudada. Colocando-se um prisma que separa as frequências da luz emitida antes da chapa reveladora, a chapa irá revelar em alturas discretas, formando as linhas espectrais. Pode-se determinar em quais frequencias discretas determinada amostra emitiu, e assim estudar suas características microscópicas. (pt)
  • Спектра́льная ли́ния — особенность участка спектра, выражающаяся в локальном повышении (светлые, эмиссионные линии, спектральные максимумы) или понижении (тёмные линии, линии поглощения, спектральные минимумы) уровня сигнала. Остаточной интенсивностью называют усиление/ослабление излучения в спектральной линии по сравнению с непрерывным спектром. Функция, характеризующая зависимость остаточной интенсивности от частоты, называется профилем линии. Число, расстояние и длины волн спектральных линий, генерируемых атомами каждого из элементов уникальны (это как бы отпечатки пальцев, по которым элементы можно распознавать). Иоганну Бальмеру удалось получить формулу, с помощью который можно было вычислить длины волн (λ) каждой из этих спектральных линий: * (где M и N — целые числа, а B — константа, которая равна 364,56 нм). (ru)
  • 譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 177320 (xsd:integer)
dbo:wikiPageRevisionID
  • 744450680 (xsd:integer)
dbp:date
  • October 2016
dbp:reason
  • What is r?
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules from their characteristic spectral lines. These "fingerprints" can be compared to the previously collected "fingerprints" of atoms and molecules, and are thus used to identify the atomic and molecular components of stars and planets which would otherwise be impossible. (en)
  • Una línea espectral es una línea oscura o brillante en un espectro uniforme y continuo, resultado de un exceso o una carencia de fotones en un estrecho rango de frecuencias, comparado con las frecuencias cercanas. Cuando existe un exceso de fotones se habla de una línea de emisión. En el caso de existir una carencia de fotones, se habla de una línea de absorción. El estudio de las líneas espectrales permite realizar un análisis químico de cuerpos lejanos, siendo la espectroscopia uno de los métodos fundamentales usados en la astrofísica, aunque es utilizada también en el estudio de la Tierra. (es)
  • Une raie spectrale est une ligne sombre ou lumineuse dans un spectre électromagnétique autrement uniforme et continu.Les raies spectrales sont le résultat de l'interaction entre un système quantique (généralement des atomes, mais parfois aussi des molécules ou des noyaux atomiques) et le rayonnement électromagnétique. (fr)
  • Una linea spettrale è una linea scura o chiara in uno spettro altrimenti uniforme e continuo, è la conseguenza di un assorbimento o emissione di fotoni in una stretta gamma di frequenza. (it)
  • Een spectraallijn is een emissielijn of een absorptielijn die correspondeert met respectievelijk het uitzenden of absorberen van een golflengte binnen het elektromagnetisch spectrum door een stralingsbron. (nl)
  • スペクトル線(英: Spectral line)とは、他の領域では一様で連続な光スペクトル上に現れる暗線または輝線である。狭い周波数領域における光子数が、隣接周波数帯に比べ少ない、あるいは多いために生じる。 (ja)
  • Als Spektrallinien oder Resonanzlinien bezeichnet man voneinander scharf getrennte Linien eines Spektrums emittierter (Emissionslinien) oder absorbierter (Absorptionslinien) elektromagnetischer Wellen, im engeren Sinne innerhalb des Wellenlängenbereichs des sichtbaren Lichts (Lichtspektrum). Spektrallinien werden durch Wellenlänge, Linienintensität und Linienbreite charakterisiert. Die Ursache der Spektrallinien sind die durch Licht angeregten elektronischen Übergänge in Atomen oder Molekülen. (de)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) خط الطيف (بالإنجليزية: Spectral line) هو خط داكن أو ساطع في طيف . يتكون طيف الشمس مثلا أو طيف نجم عن رؤيته وتحليلة تحليلا طيفيا من مجموعات خطوط متوازية متعاقبة تبدأ بلون الضوء الأحمر فالبرتقالي فالأصفر إلى الأخضر والأزرق إلى البنفسجي . تلك هي خطوط الطيف المرئي ، وكل منها لها طول موجة معينة ، تعتمد على نوع العنصر الذي يبعثها . فإذا شاهدنا طيف الشمس وقمنا بتحليله وجدنا أن معظم خطوط طيفه تنتمي إلى انبعاثات ضوئية من الهيدروجين وقليل من الخطوط تحمل "بصمة " غاز الهيليوم ، وهما المكونان الرئيسان للشمس. (ar)
  • Linia spektralna – ciemna lub jasna linia w jednolitym, ciągłym widmie, powstającą wskutek nadmiaru lub deficytu fotonów (w porównaniu z pobliskimi częstotliwościami) w wąskim zakresie częstotliwości. Linie spektralne są wynikiem oddziaływania pomiędzy układem kwantowym (zazwyczaj atomy, ale czasami też molekuły i jądra atomowe) i fotonami. Kiedy foton ma dokładnie taką energię, by zmienić energetyczny stan układu (w przypadku atomu jest to zazwyczaj zmiana orbity przez elektron), zostaje zaabsorbowany. Wzbudzony pochłonięciem energii układ może wyemitować foton. Emitowany (re-emitowany) foton może mieć taką samą częstotliwość lub może być ona inna. Układ może być też wzbudzony poprzez dostarczenie energii w wyniku zderzeń elementów układu (np. atomów). (pl)
  • Raia espectral, risca espetral ou linha espectral é o resultado de uma transição quântica que pode ser observado macroscopicamente. Estas linhas se apresentam, como revelações em algum tipo de material, e são a maneira mais simples de se detectar as transições quânticas. Quando uma transição entre níveis de energia ocorre em uma determinada amostra, ela emite ou absorve radiação eletromagnética em frequências discretas características. Onde essa radiação incide sobre a chapa reveladora, a cor da mesma é mudada. (pt)
  • Спектра́льная ли́ния — особенность участка спектра, выражающаяся в локальном повышении (светлые, эмиссионные линии, спектральные максимумы) или понижении (тёмные линии, линии поглощения, спектральные минимумы) уровня сигнала. Остаточной интенсивностью называют усиление/ослабление излучения в спектральной линии по сравнению с непрерывным спектром. Функция, характеризующая зависимость остаточной интенсивности от частоты, называется профилем линии. Иоганну Бальмеру удалось получить формулу, с помощью который можно было вычислить длины волн (λ) каждой из этих спектральных линий: * (ru)
  • 譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 (zh)
rdfs:label
  • Spectral line (en)
  • خط طيفي (ar)
  • Spektrallinie (de)
  • Línea espectral (es)
  • Raie spectrale (fr)
  • Linea spettrale (it)
  • スペクトル線 (ja)
  • Spectraallijn (nl)
  • Linie spektralne (pl)
  • Raia espectral (pt)
  • Спектральная линия (ru)
  • 譜線 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbp:variable of
is foaf:primaryTopic of