Set theory is the branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects.

Property Value
dbo:abstract
  • نظرية المجموعة (الجمع: نظرية المجموعات ) (بالإنجليزية: Set theory) هو فرع من علم المنطق الرياضي، تهتم بدراسة المجموعات والتي هي تجميع لكائنات رياضية مجردة والعمليات المطبقة عليها، وتشكل إحدى أهم ركائز الرياضيات الحديثة.كانت بداية الاهتمام بهذا العلم والعمل على دراسته بالقرن التاسع عشر عندما بداه جورج كانتور وريتشارد ديدكايند. وبعد اكتشاف تناقضات عديدة في نظرية المجموعات الأساسية العديد من الانظمة البديهية لتجاوز هذه التناقضات ومن هذه كان نظام زيرملو-فرانكلن مع بديهية الاختيار افضلها على الاطلاق. (ar)
  • Die Mengenlehre ist ein grundlegendes Teilgebiet der Mathematik, das sich mit der Untersuchung von Mengen, also von Zusammenfassungen von Objekten, beschäftigt. Die gesamte Mathematik, wie sie heute üblicherweise gelehrt wird, ist in der Sprache der Mengenlehre formuliert und baut auf den Axiomen der Mengenlehre auf. Die meisten mathematischen Objekte, die in Teilbereichen wie Algebra, Analysis, Geometrie, Stochastik oder Topologie behandelt werden, um nur einige wenige zu nennen, lassen sich als Mengen definieren. Gemessen daran ist die Mengenlehre eine recht junge Wissenschaft; erst nach der Überwindung der Grundlagenkrise der Mathematik zu Beginn des 20. Jahrhunderts konnte die Mengenlehre ihren heutigen, zentralen und grundlegenden Platz in der Mathematik einnehmen. (de)
  • Set theory is the branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects. The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s. After the discovery of paradoxes in naive set theory, numerous axiom systems were proposed in the early twentieth century, of which the Zermelo–Fraenkel axioms, with the axiom of choice, are the best-known. Set theory is commonly employed as a foundational system for mathematics, particularly in the form of Zermelo–Fraenkel set theory with the axiom of choice. Beyond its foundational role, set theory is a branch of mathematics in its own right, with an active research community. Contemporary research into set theory includes a diverse collection of topics, ranging from the structure of the real number line to the study of the consistency of large cardinals. (en)
  • La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática. Sin embargo, la teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: números, funciones, figuras geométricas,...; y junto con la lógica permite estudiar los fundamentos de aquella. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática. Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica. El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» del infinito en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influenciado por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana, de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand Russell, Ernst Zermelo, Abraham Fraenkel y otros a principios del siglo XX. (es)
  • La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du XIXe siècle. La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes… C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens. En plus de proposer un fondement aux mathématiques, Cantor introduisait avec la théorie des ensembles des concepts radicalement nouveaux, et notamment l'idée qu'il existe plusieurs types d'infini que l'on peut mesurer et comparer au moyen de nouveaux nombres (ordinaux et cardinaux). À cause de sa modernité, la théorie des ensembles fut âprement controversée, notamment parce qu'elle postulait l'existence d'ensembles infinis, en contradiction avec certains principes des mathématiques constructives ou intuitionnistes. Au début du XXe siècle, plusieurs facteurs ont poussé les mathématiciens à développer une axiomatique pour la théorie des ensembles : la découverte de paradoxes tels que le paradoxe de Russell, mais surtout le questionnement autour de l'hypothèse du continu qui nécessitait une définition précise de la notion d'ensemble. Cette approche formelle conduisit à plusieurs systèmes axiomatiques, le plus connu étant les , mais également la théorie des classes de von Neumann ou la théorie des types de Russell. (fr)
  • La teoria degli insiemi è una teoria matematica posta ai fondamenti della matematica stessa, collocandosi nell'ambito della logica matematica. Prima della prima metà del XIX secolo la nozione di insieme veniva considerata solo come qualcosa di intuitivo e generico. La nozione è stata sviluppata nella seconda metà del XIX secolo dal matematico tedesco Georg Cantor, è stata al centro dei dibattiti sui fondamenti dal 1890 al 1930 ed ha ricevuto le prime sistemazioni assiomatiche per merito di Ernst Zermelo, Adolf Fraenkel, Paul Bernays, Kurt Gödel, John von Neumann e Thoralf Skolem, Gottlob Frege (le convenzioni linguistico-formali, come il quantificatore universale ed esistenziale) e Giuseppe Peano (notazione e sintassi). In questo periodo si sono assestati due sistemi di assiomi chiamati sistema assiomatico di Zermelo-Fraenkel e sistema assiomatico di Von Neumann-Bernays-Gödel. Successivamente si sono affrontate le tematiche riguardanti il problema della completezza dei sistemi di assiomi (v. teorema di incompletezza di Gödel), i rapporti con la teoria della calcolabilità (vedasi anche macchina di Turing) e la compatibilità dei sistemi di assiomi con l'assioma della scelta e con assiomi equivalenti o simili. Accanto a differenti consolidate teorie formali degli insiemi (vedi anche teoria assiomatica degli insiemi) esistono esposizioni più intuitive che costituiscono la cosiddetta teoria ingenua degli insiemi. Elenchiamo le entità principali della teoria degli insiemi. (it)
  • 集合論(しゅうごうろん、英: set theory, 仏: théorie des ensembles, 独: Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 (ja)
  • De verzamelingenleer vormt sinds het begin van de twintigste eeuw een van de grondslagen van de wiskunde. De verzamelingenleer betreft de bestudering en formalisering van het begrip verzameling, en ondersteunt daarmee de axiomatische onderbouwing van andere deelgebieden van de wiskunde. (nl)
  • Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań. Na przestrzeni lat język i metody teorii mnogości przeniknęły do wielu innych działów matematyki (na przykład w algebrze rozważa się obiekty teoriomnogościowe zwane ultrafiltrami). Teoria mnogości rozwijana jest także jako samodzielna dyscyplina. (pl)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 27553 (xsd:integer)
dbo:wikiPageRevisionID
  • 708236685 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • نظرية المجموعة (الجمع: نظرية المجموعات ) (بالإنجليزية: Set theory) هو فرع من علم المنطق الرياضي، تهتم بدراسة المجموعات والتي هي تجميع لكائنات رياضية مجردة والعمليات المطبقة عليها، وتشكل إحدى أهم ركائز الرياضيات الحديثة.كانت بداية الاهتمام بهذا العلم والعمل على دراسته بالقرن التاسع عشر عندما بداه جورج كانتور وريتشارد ديدكايند. وبعد اكتشاف تناقضات عديدة في نظرية المجموعات الأساسية العديد من الانظمة البديهية لتجاوز هذه التناقضات ومن هذه كان نظام زيرملو-فرانكلن مع بديهية الاختيار افضلها على الاطلاق. (ar)
  • Die Mengenlehre ist ein grundlegendes Teilgebiet der Mathematik, das sich mit der Untersuchung von Mengen, also von Zusammenfassungen von Objekten, beschäftigt. Die gesamte Mathematik, wie sie heute üblicherweise gelehrt wird, ist in der Sprache der Mengenlehre formuliert und baut auf den Axiomen der Mengenlehre auf. Die meisten mathematischen Objekte, die in Teilbereichen wie Algebra, Analysis, Geometrie, Stochastik oder Topologie behandelt werden, um nur einige wenige zu nennen, lassen sich als Mengen definieren. Gemessen daran ist die Mengenlehre eine recht junge Wissenschaft; erst nach der Überwindung der Grundlagenkrise der Mathematik zu Beginn des 20. Jahrhunderts konnte die Mengenlehre ihren heutigen, zentralen und grundlegenden Platz in der Mathematik einnehmen. (de)
  • 集合論(しゅうごうろん、英: set theory, 仏: théorie des ensembles, 独: Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 (ja)
  • De verzamelingenleer vormt sinds het begin van de twintigste eeuw een van de grondslagen van de wiskunde. De verzamelingenleer betreft de bestudering en formalisering van het begrip verzameling, en ondersteunt daarmee de axiomatische onderbouwing van andere deelgebieden van de wiskunde. (nl)
  • Set theory is the branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects. (en)
  • La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática. (es)
  • La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du XIXe siècle.La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes… C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens. (fr)
  • La teoria degli insiemi è una teoria matematica posta ai fondamenti della matematica stessa, collocandosi nell'ambito della logica matematica.Prima della prima metà del XIX secolo la nozione di insieme veniva considerata solo come qualcosa di intuitivo e generico. La nozione è stata sviluppata nella seconda metà del XIX secolo dal matematico tedesco Georg Cantor, è stata al centro dei dibattiti sui fondamenti dal 1890 al 1930 ed ha ricevuto le prime sistemazioni assiomatiche per merito di Ernst Zermelo, Adolf Fraenkel, Paul Bernays, Kurt Gödel, John von Neumann e Thoralf Skolem, Gottlob Frege (le convenzioni linguistico-formali, come il quantificatore universale ed esistenziale) e Giuseppe Peano (notazione e sintassi). In questo periodo si sono assestati due sistemi di assiomi chiamati sis (it)
  • Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.Na przestrzeni lat język i metody teorii mnogości przeniknęły do wielu innych działów matematyki (na przykład w algebrze rozważa się obiekty teoriomnogościowe zwane ultrafiltrami). Teoria mnogości rozwijana jest także jako samodzielna dyscyplina. (pl)
rdfs:label
  • Set theory (en)
  • نظرية المجموعات (ar)
  • Mengenlehre (de)
  • Teoría de conjuntos (es)
  • Théorie des ensembles (fr)
  • 集合論 (ja)
  • Teoria degli insiemi (it)
  • Verzamelingenleer (nl)
  • Teoria mnogości (pl)
  • Teoria dos conjuntos (pt)
  • Теория множеств (ru)
  • 集合论 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:field of
is dbo:knownFor of
is dbo:mainInterest of
is dbo:notableIdea of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:fields of
is dbp:knownFor of
is dbp:mainInterests of
is rdfs:seeAlso of
is foaf:primaryTopic of