Semi-supervised learning is a class of supervised learning tasks and techniques that also make use of unlabeled data for training – typically a small amount of labeled data with a large amount of unlabeled data. Semi-supervised learning falls between unsupervised learning (without any labeled training data) and supervised learning (with completely labeled training data). Many machine-learning researchers have found that unlabeled data, when used in conjunction with a small amount of labeled data, can produce considerable improvement in learning accuracy. The acquisition of labeled data for a learning problem often requires a skilled human agent (e.g. to transcribe an audio segment) or a physical experiment (e.g. determining the 3D structure of a protein or determining whether there is oil

Property Value
dbo:abstract
  • En ciencias de la computación, el aprendizaje semi-supervisado es una clase de técnicas de aprendizaje automático que utiliza datos de entrenamiento tanto etiquetados como no etiquetados: normalmente una pequeña cantidad de datos etiquetados junto a una gran cantidad de datos no etiquetados. El aprendizaje semi-supervisado se encuentra entre el aprendizaje no supervisado (sin datos de entrenamiento etiquetados) y el aprendizaje supervisado (con todos los datos de entrenamiento etiquetados). Los investigadores del campo del aprendizaje automático han descubierto que los datos no etiquetados, cuando se utilizan junto a una pequeña cantidad de datos etiquetados, pueden mejorar de forma considerable la exactitud del aprendizaje. La adquisición de datos etiquetados para resolver un problema suele requerir un agente humano capacitado para clasificar de forma manual los ejemplos de entrenamiento. El coste asociado al proceso de etiquetado puede hacer que un conjunto de entrenamiento totalmente etiquetado sea inviable, mientras que la adquisición de datos sin etiquetar es relativamente poco costoso. En estos casos, el aprendizaje semi-supervisado puede ser muy útil. Un ejemplo de técnica que utiliza aprendizaje semi-supervisado es el co-entrenamiento, donde se entrenan dos o más sistemas cada uno en un conjunto de ejemplos, pero de forma que cada sistema utiliza un conjunto de características diferentes (e idealmente independientes) para cada ejemplo. Un enfoque alternativo consiste en modelar la distribución de la probabilidad conjunta de las características y las etiquetas. Los datos no etiquetados pueden ser tratados como 'datos que faltan'. Se utiliza de forma común en el algoritmo EM para maximizar la similitud del modelo. (es)
  • Semi-supervised learning is a class of supervised learning tasks and techniques that also make use of unlabeled data for training – typically a small amount of labeled data with a large amount of unlabeled data. Semi-supervised learning falls between unsupervised learning (without any labeled training data) and supervised learning (with completely labeled training data). Many machine-learning researchers have found that unlabeled data, when used in conjunction with a small amount of labeled data, can produce considerable improvement in learning accuracy. The acquisition of labeled data for a learning problem often requires a skilled human agent (e.g. to transcribe an audio segment) or a physical experiment (e.g. determining the 3D structure of a protein or determining whether there is oil at a particular location). The cost associated with the labeling process thus may render a fully labeled training set infeasible, whereas acquisition of unlabeled data is relatively inexpensive. In such situations, semi-supervised learning can be of great practical value. Semi-supervised learning is also of theoretical interest in machine learning and as a model for human learning. As in the supervised learning framework, we are given a set of independently identically distributed examples with corresponding labels . Additionally, we are given unlabeled examples . Semi-supervised learning attempts to make use of this combined information to surpass the classification performance that could be obtained either by discarding the unlabeled data and doing supervised learning or by discarding the labels and doing unsupervised learning. Semi-supervised learning may refer to either transductive learning or inductive learning. The goal of transductive learning is to infer the correct labels for the given unlabeled data only. The goal of inductive learning is to infer the correct mapping from to . Intuitively, we can think of the learning problem as an exam and labeled data as the few example problems that the teacher solved in class. The teacher also provides a set of unsolved problems. In the transductive setting, these unsolved problems are a take-home exam and you want to do well on them in particular. In the inductive setting, these are practice problems of the sort you will encounter on the in-class exam. It is unnecessary (and, according to Vapnik's principle, imprudent) to perform transductive learning by way of inferring a classification rule over the entire input space; however, in practice, algorithms formally designed for transduction or induction are often used interchangeably. (en)
  • L'apprentissage semi-supervisé est une classe de techniques d'apprentissage automatique qui utilise un ensemble de données étiquetées et non-étiquetés. Il se situe ainsi entre l'apprentissage supervisé qui n'utilise que des données étiquetées et l'apprentissage non-supervisé qui n'utilise que des données non-étiquetées. Il a été démontré que l'utilisation de données non-étiquetées, en combinaison avec des données étiquetées, permet d'améliorer significativement la qualité de l'apprentissage.Un autre intérêt provient du fait que l'étiquetage de données nécessite l'intervention d'un utilisateur humain. Lorsque les jeux de données deviennent très grands, cette opération peut s'avérer fastidieuse. Dans ce cas, l'apprentissage semi-supervisé, qui ne nécessite que quelques étiquettes, revêt un intérêt pratique évident. Un exemple d'apprentissage semi-supervisé est le coapprentissage, dans lequel deux classifieurs apprennent un ensemble de données, mais en utilisant chacun un ensemble de caractéristiques différentes, idéalement indépendantes. Si les données sont des individus à classer en hommes et femmes, l'un pourra utiliser la taille et l'autre la pilosité par exemple. (fr)
  • Обучение с частичным привлечением учителя или полуавтоматическое обучение или частичное обучение (англ. Semi-supervised learning) — способ машинного обучения, разновидность обучения с учителем, которое также использует неразмеченные данные для тренировки — обычно небольшое количество размеченных данных и большое количество неразмеченных данных. Полуавтоматическое обучение занимает промежуточную позицию между обучением без учителя (без привлечения каких-либо размеченных данных для тренировки) и обучением с учителем (с привлечением лишь размеченных данных). Многие исследователи машинного обучения обнаружили, что неразмеченные данные, при использовании в сочетании с небольшим количеством размеченных данных, могут значительно улучшить точность обучения. Задание размеченных данных для задачи обучения часто требует квалифицированного человека (например, для транскрибирования аудио файла) или физического эксперимента (например, для определения 3D структуры белка или выявления наличия нефти в определенном регионе). Поэтому затраты на разметку данных могут сделать процесс обучения с использованием лишь размеченных данных невыполнимым, в то время как процесс задания неразмеченных данных не является очень затратным. В таких ситуациях, полуавтоматическое обучения может иметь большое практическое значение. Такое обучение также представляет интерес в сфере машинного обучения и как модель для человеческого обучения. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2829632 (xsd:integer)
dbo:wikiPageRevisionID
  • 737330753 (xsd:integer)
dct:subject
rdfs:comment
  • Semi-supervised learning is a class of supervised learning tasks and techniques that also make use of unlabeled data for training – typically a small amount of labeled data with a large amount of unlabeled data. Semi-supervised learning falls between unsupervised learning (without any labeled training data) and supervised learning (with completely labeled training data). Many machine-learning researchers have found that unlabeled data, when used in conjunction with a small amount of labeled data, can produce considerable improvement in learning accuracy. The acquisition of labeled data for a learning problem often requires a skilled human agent (e.g. to transcribe an audio segment) or a physical experiment (e.g. determining the 3D structure of a protein or determining whether there is oil (en)
  • En ciencias de la computación, el aprendizaje semi-supervisado es una clase de técnicas de aprendizaje automático que utiliza datos de entrenamiento tanto etiquetados como no etiquetados: normalmente una pequeña cantidad de datos etiquetados junto a una gran cantidad de datos no etiquetados. El aprendizaje semi-supervisado se encuentra entre el aprendizaje no supervisado (sin datos de entrenamiento etiquetados) y el aprendizaje supervisado (con todos los datos de entrenamiento etiquetados). Los investigadores del campo del aprendizaje automático han descubierto que los datos no etiquetados, cuando se utilizan junto a una pequeña cantidad de datos etiquetados, pueden mejorar de forma considerable la exactitud del aprendizaje. La adquisición de datos etiquetados para resolver un problema sue (es)
  • L'apprentissage semi-supervisé est une classe de techniques d'apprentissage automatique qui utilise un ensemble de données étiquetées et non-étiquetés. Il se situe ainsi entre l'apprentissage supervisé qui n'utilise que des données étiquetées et l'apprentissage non-supervisé qui n'utilise que des données non-étiquetées. Il a été démontré que l'utilisation de données non-étiquetées, en combinaison avec des données étiquetées, permet d'améliorer significativement la qualité de l'apprentissage.Un autre intérêt provient du fait que l'étiquetage de données nécessite l'intervention d'un utilisateur humain. Lorsque les jeux de données deviennent très grands, cette opération peut s'avérer fastidieuse. Dans ce cas, l'apprentissage semi-supervisé, qui ne nécessite que quelques étiquettes, revêt un i (fr)
  • Обучение с частичным привлечением учителя или полуавтоматическое обучение или частичное обучение (англ. Semi-supervised learning) — способ машинного обучения, разновидность обучения с учителем, которое также использует неразмеченные данные для тренировки — обычно небольшое количество размеченных данных и большое количество неразмеченных данных. Полуавтоматическое обучение занимает промежуточную позицию между обучением без учителя (без привлечения каких-либо размеченных данных для тренировки) и обучением с учителем (с привлечением лишь размеченных данных). (ru)
rdfs:label
  • Semi-supervised learning (en)
  • Aprendizaje semisupervisado (es)
  • Apprentissage semi-supervisé (fr)
  • Обучение с частичным привлечением учителя (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of