In statistical modeling, regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the average value of the dependent variable when the independent variables are fixed. Less

Property Value
dbo:abstract
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) تحليل الانحدار أو تحليل الارتباط أو تحليل الانكفاء (بالإنجليزية: regression analysis) هو كل طريقة إحصائية يتم فيها التنبؤ بمتوسط متغير عشوائي أو عدة متغيرات عشوائية اعتمادا على قيم وقياسات متغيرات عشوائية أخرى، له عدة أنواع مثل: الانحدار الخطي، والانحدار اللوجستي، وانحدار بواسون، والتعليم المراقب والانحدار موزون الوحدة. تحليل الانحدار هو أكثر من عملية ملائمة منحنى (أي اختيار المنحنى الأكثر ملائمة لمجموعة نقاط بيانية معطاة) فهو يتضمن ملائمة نموذج باستخدام مكونات حتمية واعتباطية. المكونات الحتمية تدعى المتنبئات أما المكونات الاعتباطية فتدعى الخطأ. الشكل الأبسط لنموذج الانحدار يحوي متغير تابع (غير مستقل) (يدعى أيضا متغير الخرج، أو المتغير الداخلي أو المتغير ع) إضافة إلى متغير مستقل (يدعى العامل، أو المتغير الخارجي، أو المتغير-س). من الأمثلة النموذجية على تحليل الانحدار: اعتماد ضغط الدم Y على عمر الشخص X، أو اعتماد الوزن لحيوانات التجربة Y على معدل التغذية اليومي X. هذا الارتباط والتابعية بين X وY هي ما ندعوه بالانحدار أو الارتباط فنقول ارتباط Y ب X. ويلاحظ من ذلك أن نموذج الانحدار يعتمد دائماً على علاقة السببية بمعنى ان يكون التغير في المتغير المستقل مسبب رئيسي للتغير في المتغير التابع. ونظرية تحليل الانحدار تعتمد على النظرية الاقتصادية بين متغيرين أي أنها تفترض ثبات العوامل الأخرى. (ar)
  • Regressionsanalysen sind statistische Analyseverfahren, die zum Ziel haben, Beziehungen zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen zu modellieren. Sie werden insbesondere verwendet, wenn Zusammenhänge quantitativ zu beschreiben oder Werte der abhängigen Variablen zu prognostizieren sind. (de)
  • In statistical modeling, regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the average value of the dependent variable when the independent variables are fixed. Less commonly, the focus is on a quantile, or other location parameter of the conditional distribution of the dependent variable given the independent variables. In all cases, the estimation target is a function of the independent variables called the regression function. In regression analysis, it is also of interest to characterize the variation of the dependent variable around the regression function which can be described by a probability distribution. A related but distinct approach is necessary condition analysis (NCA), which estimates the maximum (rather than average) value of the dependent variable for a given value of the independent variable (ceiling line rather than central line) in order to identify what value of the independent variable is necessary but not sufficient for a given value of the dependent variable. Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables. However this can lead to illusions or false relationships, so caution is advisable; for example, correlation does not imply causation. Many techniques for carrying out regression analysis have been developed. Familiar methods such as linear regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of a finite number of unknown parameters that are estimated from the data. Nonparametric regression refers to techniques that allow the regression function to lie in a specified set of functions, which may be infinite-dimensional. The performance of regression analysis methods in practice depends on the form of the data generating process, and how it relates to the regression approach being used. Since the true form of the data-generating process is generally not known, regression analysis often depends to some extent on making assumptions about this process. These assumptions are sometimes testable if a sufficient quantity of data is available. Regression models for prediction are often useful even when the assumptions are moderately violated, although they may not perform optimally. However, in many applications, especially with small effects or questions of causality based on observational data, regression methods can give misleading results. In a narrower sense, regression may refer specifically to the estimation of continuous response variables, as opposed to the discrete response variables used in classification. The case of a continuous output variable may be more specifically referred to as metric regression to distinguish it from related problems. (en)
  • En estadística, el análisis de la regresión es un proceso estadístico para estimar las relaciones entre variables. Incluye muchas técnicas para el modelado y análisis de diversas variables, cuando la atención se centra en la relación entre una variable dependiente y una o más variables independientes (o predictoras). Más específicamente, el análisis de regresión ayuda a entender cómo el valor de la variable dependiente varía al cambiar el valor de una de las variables independientes, manteniendo el valor de las otras variables independientes fijas. Más comúnmente, el análisis de regresión estima la esperanza condicional de la variable dependiente dadas las variables independientes - es decir, el valor promedio de la variable dependiente cuando se fijan las variables independientes. Con menor frecuencia, la atención se centra en un cuantil, u otro parámetro de localización de la distribución condicional de la variable dependiente dadas las variables independientes. En todos los casos, el objetivo es la estimación de una función de las variables independientes llamada la función de regresión. En el análisis de regresión, también es de interés para caracterizar la variación de la variable dependiente en torno a la función de regresión que puede ser descrito por una distribución de probabilidad. El análisis de regresión es ampliamente utilizado para la predicción y previsión, donde su uso tiene superposición sustancial en el campo de aprendizaje automático. El análisis de regresión se utiliza también para comprender que cuales de las variables independientes están relacionadas con la variable dependiente, y explorar las formas de estas relaciones. En circunstancias limitadas, el análisis de regresión puede utilizarse para inferir relaciones causales entre las variables independientes y dependientes. Sin embargo, esto puede llevar a ilusiones o falsas relaciones, por lo que se recomienda precaución, por ejemplo, la correlación no implica causalidad. Se han desarrollado muchas técnicas para llevar a cabo análisis de regresión. Métodos familiares tales como regresión lineal y ordinaria de mínimos cuadrados de regresión son paramétrica, en que la función de regresión se define en términos de un número finito de desconocidos parámetros que se estiman a partir de los datos. regresión no paramétrica se refiere a las técnicas que permiten que la función de regresión mienta en un conjunto específico de funciones, que puede ser de dimensión infinita. El desempeño de los métodos de análisis de regresión en la práctica depende de la forma del proceso de generación de datos, y cómo se relaciona con el método de regresión que se utiliza. Dado que la forma verdadera del proceso de generación de datos generalmente no se conoce, el análisis de regresión depende a menudo hasta cierto punto de hacer suposiciones acerca de este proceso. Estos supuestos son a veces comprobable si una cantidad suficiente de datos está disponible. Los modelos de regresión para la predicciamente, aunque pueden no funcionar de manera óptima. Sin embargo, en muchas aplicaciones, sobre todo con pequeños efectos o las cuestiones de causalidad sobre la base de los datos de observación, métodos de regresión pueden dar resultados engañosos. (es)
  • La régression est un ensemble de méthodes statistiques très utilisées pour analyser la relation d'une variable par rapport à une ou plusieurs autres. Pendant longtemps, la régression d'une variable aléatoire sur le vecteur de variables aléatoires désignait la moyenne conditionnelle de sachant . Aujourd'hui, le terme de régression désigne tout élément de la distribution conditionnelle de sachant considérée comme une fonction de . On peut par exemple s'intéresser à la moyenne conditionnelle, à la médiane conditionnelle, au mode conditionnel, à la variance conditionnelle... Le terme « régression » a été introduit par Francis Galton à la suite d'une étude sur la taille des descendants de personnes de grande taille, qui diminue de générations en générations vers une taille moyenne (donc leur taille régresse). En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification. Certaines méthodes, comme la régression logistique, sont à la fois des méthodes de régression au sens où il s'agit de prédire la probabilité d'appartenir à chacune des classes et des méthodes de classification. (fr)
  • 回帰(かいき、英: regression)とは、統計学において、Y が連続値の時にデータに Y = f(X) というモデル(「定量的な関係の構造」)を当てはめる事。別の言い方では、連続尺度の従属変数(目的変数)Y と独立変数(説明変数)X の間にモデルを当てはめること。X が1次元ならば単回帰、X が2次元以上ならば重回帰と言う。Y が離散の場合は分類と言う。 回帰分析(かいきぶんせき、英: regression analysis)とは、回帰により分析する事。 回帰で使われる、最も基本的なモデルは Y = AX + B という形式の線形回帰である。 (ja)
  • L'analisi della regressione è una tecnica usata per analizzare una serie di dati che consistono in una variabile dipendente e una o più variabili indipendenti. Lo scopo è stimare una eventuale relazione funzionale esistente tra la variabile dipendente e le variabili dipendenti. La variabile dipendente nell'equazione di regressione è una funzione delle variabili indipendenti più un termine d'errore. Quest'ultimo è una variabile casuale e rappresenta una variazione non controllabile e imprevedibile nella variabile dipendente. I parametri sono stimati in modo da descrivere al meglio i dati. Il metodo più comunemente utilizzato per ottenere le migliori stime è il metodo dei "minimi quadrati" (OLS), ma sono utilizzati anche altri metodi. Il data modeling può essere usato senza alcuna conoscenza dei processi sottostanti che hanno generato i dati; in questo caso il modello è un modello empirico. Inoltre, nella modellizzazione, non è richiesta la conoscenza della distribuzione di probabilità degli errori. L'Analisi della regressione richiede ipotesi riguardanti la distribuzione di probabilità degli errori. Test statistici vengono effettuati sulla base di tali ipotesi. Nell'analisi della regressione il termine "modello" comprende sia la funzione usata per modellare i dati che le assunzioni concernenti la distribuzione di probabilità. L'analisi della regressione può essere usata per effettuare previsioni (ad esempio per prevedere dati futuri di una serie temporale), inferenza statistica, per testare ipotesi o per modellare delle relazioni di dipendenza. Questi usi della regressione dipendono fortemente dal fatto che le assunzioni di partenza siano verificate. L'uso dell'analisi della regressione è stato criticato in diversi casi in cui le ipotesi di partenza non possono essere verificate. Un fattore che contribuisce all'uso improprio della regressione è che richiede più competenze per criticare un modello che per adattarlo. (it)
  • Regressie-analyse is een statistische techniek voor het analyseren van gegevens waarin (mogelijk) sprake is van een specifieke samenhang, aangeduid als regressie. Deze samenhang houdt in dat de waarde van een stochastische variabele (de afhankelijke variabele), op een storingsterm na, afhangt van een of meer in principe instelbare vrij te kiezen variabelen. De afhankelijke variabele wordt meestal met aangeduid en de onafhankelijke variabele met (eventueel als vector). Het verband is dan: , Hierin stelt de storingsterm voor, die onafhankelijk is van (dat wil zeggen dat men aanneemt dat de volledige variatie te wijten is aan een fout in ). De functie is in de relatie onbekend, maar voor toepassing van regressie-analyse behoort deze wel tot een bepaalde klasse die met een beperkt aantal parameters beschreven kan worden. Het paar wordt wel aangeduid als onafhankelijke en afhankelijke variabele of als verklarende en te verklaren variabele; ook wordt wel gesproken van voorspeller en responsvariabele, of predictor en criteriumvariabele. (nl)
  • Regresja − metoda statystyczna pozwalająca na badanie związku pomiędzy wielkościami danych i przewidywanie na tej podstawie nieznanych wartości jednych wielkości na podstawie znanych wartości innych. Formalnie regresja to dowolna metoda statystyczna pozwalającą estymować warunkową wartość oczekiwaną zmiennej losowej, zwanej zmienną objaśnianą, dla zadanych wartości innej zmiennej lub wektora zmiennych losowych (tzw. zmiennych objaśniających). Użycie regresji w praktyce sprowadza się do dwóch faz: * konstruowanie modelu - budowa tzw. modelu regresyjnego, czyli funkcji opisującej, jak zależy wartość oczekiwana zmiennej objaśnianej od zmiennych objaśniających. Funkcja ta może być zadana nie tylko czystym wzorem matematycznym, ale także całym algorytmem, np. w postaci drzewa regresyjnego, sieci neuronowej, itp.. Model konstruuje się tak, aby jak najlepiej pasował do danych z próby, zawierającej zarówno zmienne objaśniające, jak i objaśniane (tzw. zbiór uczący). Mówiąc o wyliczaniu regresji ma się na myśli tę fazę. * stosowanie modelu (tzw. scoring) - użycie wyliczonego modelu do danych w których znamy tylko zmienne objaśniające, w celu wyznaczenia wartości oczekiwanej zmiennej objaśnianej. Dział statystyki zajmujący się modelami i metodami regresji zwany jest analizą regresji. Regresja, w której występuje więcej niż jedna zmienna objaśniająca, zwana jest regresją wieloraką (ang. multiple regression). (pl)
  • Em estatística, regressão é uma técnica que permite explorar e inferir a relação de uma variável dependente (variável de resposta) com variáveis independentes específicas (variáveis explicatórias). A análise da regressão pode ser usada como um método descritivo da análise de dados (como, por exemplo, o ajustamento de curvas) sem serem necessárias quaisquer suposições acerca dos processos que permitiram gerar os dados. Regressão designa também uma equação matemática que descreva a relação entre duas ou mais variáveis. O método de estimação mais amplamente utilizado é o método dos mínimos quadrados ordinários. Os principais problemas que devem ser enfrentados em uma regressão são: multicolinearidade, heteroscedasticidade, autocorrelação, endogeneidade e atipicidade. (pt)
  • Регрессио́нный анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Ложная корреляция), а не причинно-следственные отношения. (ru)
  • 迴歸分析(英语:Regression Analysis)是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。更具体的来说,回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。 迴歸分析是建立因變數 (或稱依變數,反應變數)與自變數 (或稱獨變數,解釋變數)之間關係的模型。簡單線性回歸使用一個自變量 ,複迴歸使用超過一個自變量( )。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 826997 (xsd:integer)
dbo:wikiPageRevisionID
  • 745068951 (xsd:integer)
dbp:id
  • p/r080620
dbp:title
  • Regression analysis
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • Regressionsanalysen sind statistische Analyseverfahren, die zum Ziel haben, Beziehungen zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen zu modellieren. Sie werden insbesondere verwendet, wenn Zusammenhänge quantitativ zu beschreiben oder Werte der abhängigen Variablen zu prognostizieren sind. (de)
  • 回帰(かいき、英: regression)とは、統計学において、Y が連続値の時にデータに Y = f(X) というモデル(「定量的な関係の構造」)を当てはめる事。別の言い方では、連続尺度の従属変数(目的変数)Y と独立変数(説明変数)X の間にモデルを当てはめること。X が1次元ならば単回帰、X が2次元以上ならば重回帰と言う。Y が離散の場合は分類と言う。 回帰分析(かいきぶんせき、英: regression analysis)とは、回帰により分析する事。 回帰で使われる、最も基本的なモデルは Y = AX + B という形式の線形回帰である。 (ja)
  • Регрессио́нный анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Ложная корреляция), а не причинно-следственные отношения. (ru)
  • 迴歸分析(英语:Regression Analysis)是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。更具体的来说,回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。 迴歸分析是建立因變數 (或稱依變數,反應變數)與自變數 (或稱獨變數,解釋變數)之間關係的模型。簡單線性回歸使用一個自變量 ,複迴歸使用超過一個自變量( )。 (zh)
  • In statistical modeling, regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the average value of the dependent variable when the independent variables are fixed. Less (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) تحليل الانحدار أو تحليل الارتباط أو تحليل الانكفاء (بالإنجليزية: regression analysis) هو كل طريقة إحصائية يتم فيها التنبؤ بمتوسط متغير عشوائي أو عدة متغيرات عشوائية اعتمادا على قيم وقياسات متغيرات عشوائية أخرى، له عدة أنواع مثل: الانحدار الخطي، والانحدار اللوجستي، وانحدار بواسون، والتعليم المراقب والانحدار موزون الوحدة. ويلاحظ من ذلك أن نموذج الانحدار يعتمد دائماً على علاقة السببية بمعنى ان يكون التغير في المتغير المستقل مسبب رئيسي للتغير في المتغير التابع. (ar)
  • En estadística, el análisis de la regresión es un proceso estadístico para estimar las relaciones entre variables. Incluye muchas técnicas para el modelado y análisis de diversas variables, cuando la atención se centra en la relación entre una variable dependiente y una o más variables independientes (o predictoras). Más específicamente, el análisis de regresión ayuda a entender cómo el valor de la variable dependiente varía al cambiar el valor de una de las variables independientes, manteniendo el valor de las otras variables independientes fijas. Más comúnmente, el análisis de regresión estima la esperanza condicional de la variable dependiente dadas las variables independientes - es decir, el valor promedio de la variable dependiente cuando se fijan las variables independientes. Con men (es)
  • La régression est un ensemble de méthodes statistiques très utilisées pour analyser la relation d'une variable par rapport à une ou plusieurs autres. Pendant longtemps, la régression d'une variable aléatoire sur le vecteur de variables aléatoires désignait la moyenne conditionnelle de sachant . Aujourd'hui, le terme de régression désigne tout élément de la distribution conditionnelle de sachant considérée comme une fonction de . On peut par exemple s'intéresser à la moyenne conditionnelle, à la médiane conditionnelle, au mode conditionnel, à la variance conditionnelle... (fr)
  • Regressie-analyse is een statistische techniek voor het analyseren van gegevens waarin (mogelijk) sprake is van een specifieke samenhang, aangeduid als regressie. Deze samenhang houdt in dat de waarde van een stochastische variabele (de afhankelijke variabele), op een storingsterm na, afhangt van een of meer in principe instelbare vrij te kiezen variabelen. De afhankelijke variabele wordt meestal met aangeduid en de onafhankelijke variabele met (eventueel als vector). Het verband is dan: , Hierin stelt de storingsterm voor, die onafhankelijk is van ). De functie (nl)
  • L'analisi della regressione è una tecnica usata per analizzare una serie di dati che consistono in una variabile dipendente e una o più variabili indipendenti. Lo scopo è stimare una eventuale relazione funzionale esistente tra la variabile dipendente e le variabili dipendenti. La variabile dipendente nell'equazione di regressione è una funzione delle variabili indipendenti più un termine d'errore. Quest'ultimo è una variabile casuale e rappresenta una variazione non controllabile e imprevedibile nella variabile dipendente. I parametri sono stimati in modo da descrivere al meglio i dati. Il metodo più comunemente utilizzato per ottenere le migliori stime è il metodo dei "minimi quadrati" (OLS), ma sono utilizzati anche altri metodi. (it)
  • Regresja − metoda statystyczna pozwalająca na badanie związku pomiędzy wielkościami danych i przewidywanie na tej podstawie nieznanych wartości jednych wielkości na podstawie znanych wartości innych. Formalnie regresja to dowolna metoda statystyczna pozwalającą estymować warunkową wartość oczekiwaną zmiennej losowej, zwanej zmienną objaśnianą, dla zadanych wartości innej zmiennej lub wektora zmiennych losowych (tzw. zmiennych objaśniających). Użycie regresji w praktyce sprowadza się do dwóch faz: (pl)
  • Em estatística, regressão é uma técnica que permite explorar e inferir a relação de uma variável dependente (variável de resposta) com variáveis independentes específicas (variáveis explicatórias). A análise da regressão pode ser usada como um método descritivo da análise de dados (como, por exemplo, o ajustamento de curvas) sem serem necessárias quaisquer suposições acerca dos processos que permitiram gerar os dados. Regressão designa também uma equação matemática que descreva a relação entre duas ou mais variáveis. (pt)
rdfs:label
  • Regression analysis (en)
  • تحليل الانحدار (ar)
  • Regressionsanalyse (de)
  • Análisis de la regresión (es)
  • Régression (statistiques) (fr)
  • Analisi della regressione (it)
  • 回帰分析 (ja)
  • Regressie-analyse (nl)
  • Regresja (statystyka) (pl)
  • Regressão (pt)
  • Регрессионный анализ (ru)
  • 迴歸分析 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of