Die reellen Zahlen bilden einen in der Mathematik bedeutenden Zahlenbereich. Er ist eine Erweiterung des Bereichs der rationalen Zahlen, der Brüche, womit die Maßzahlen der Messwerte für übliche physikalische Größen wie zum Beispiel Länge, Temperatur oder Masse als reelle Zahlen aufgefasst werden können. Die reellen Zahlen haben gegenüber den rationalen Zahlen besondere topologische Eigenschaften. Diese bestehen unter anderem darin, dass für jedes „stetige Problem“, für das in einem gewissen Sinne beliebig gute, nahe beieinander liegende näherungsweise Lösungen in Form von reellen Zahlen existieren, auch eine reelle Zahl als exakte Lösung existiert. Daher können sie in der Analysis, der Topologie und der Geometrie vielseitig eingesetzt werden. Beispielsweise können Längen und Flächeninhalt

Property Value
dbo:abstract
  • Die reellen Zahlen bilden einen in der Mathematik bedeutenden Zahlenbereich. Er ist eine Erweiterung des Bereichs der rationalen Zahlen, der Brüche, womit die Maßzahlen der Messwerte für übliche physikalische Größen wie zum Beispiel Länge, Temperatur oder Masse als reelle Zahlen aufgefasst werden können. Die reellen Zahlen haben gegenüber den rationalen Zahlen besondere topologische Eigenschaften. Diese bestehen unter anderem darin, dass für jedes „stetige Problem“, für das in einem gewissen Sinne beliebig gute, nahe beieinander liegende näherungsweise Lösungen in Form von reellen Zahlen existieren, auch eine reelle Zahl als exakte Lösung existiert. Daher können sie in der Analysis, der Topologie und der Geometrie vielseitig eingesetzt werden. Beispielsweise können Längen und Flächeninhalte sehr vielfältiger geometrischer Objekte sinnvoll als reelle Zahlen, nicht aber etwa als rationale Zahlen definiert werden. Wenn in empirischen Wissenschaften mathematische Konzepte – wie zum Beispiel Längen – zur Beschreibung eingesetzt werden, spielt daher auch dort die Theorie der reellen Zahlen oft eine wichtige Rolle. (de)
  • En matemáticas, el conjunto de los números reales (denotado por ℝ) incluye tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como: √5, π, el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII. Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal. Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento prescindían del rigor y fundamento lógico, tan exigente en los enfoques teóricos de la actualidad, y se usaban expresiones como «pequeño», «límite», «se acerca» sin una definición precisa. Esto llevó a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa para la matemática, la cual consistió de definiciones formales y rigurosas (aunque ciertamente técnicas) del concepto de número real. En una sección posterior se describirán dos de las definiciones precisas más usuales actualmente: clases de equivalencia de sucesiones de Cauchy de números racionales y cortaduras de Dedekind. (es)
  • En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels la racine carrée de 2, π et e. La notion de nombre réel émerge progressivement de la manipulation des rapports de grandeurs géométriques autres que les rapports d'entiers depuis leur prise en compte par Eudoxe de Cnide au IVe siècleav. J.-C. Elle s'insère aussi dans l'approximation des solutions de problèmes algébriques et donne même lieu, au milieu du XIXe siècle, à la mise en évidence de nombres transcendants. Mais la définition des nombres réels n'est formalisée que quelques décennies plus tard avec les constructions de Dedekind d'une part et de Cantor et Méray d'autre part. L'ensemble des nombres réels, noté ℝ, est alors un corps totalement ordonné, c'est-à-dire qu'il est muni des quatre opérations arithmétiques satisfaisant les mêmes règles que celles sur les fractions et ces opérations sont compatibles avec la relation d'ordre. Mais il satisfait en plus la propriété de la borne supérieure qui fonde l'analyse réelle.Enfin, cet ensemble est caractérisé par Hilbert comme dernier corps archimédien. Dans la droite réelle achevée les valeurs infinies ne satisfont plus les règles opératoires de corps, l'extension au corps des nombres complexes rend impossible la relation d'ordre total compatible, tandis que l'analyse non standard adjoint des nombres infiniment petits qui invalident le caractère archimédien. L'adjectif « réel » est utilisé pour qualifier des nombres dès le XVIIe siècle, mais il n'est explicitement défini par opposition aux nombres imaginaires qu'à la fin du XIXe siècle Il a aussi été opposé à « nombre formel » dans certaines traités de théologie ou de philosophie de la même époque. (fr)
  • 数学における実数(じっすう、 英: real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表す言葉として導入されたものである。 (ja)
  • Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych. Pitagorejczycy zauważyli, że długość przekątnej kwadratu o boku długości 1 nie daje się wyrazić przy pomocy ilorazu dwóch liczb całkowitych (zob. dowód niewymierności pierwiastka z 2). Podobnie liczba pi, którą można definiować jako stosunek długości dowolnego okręgu do jego średnicy, nie jest liczbą wymierną. Zbiór liczb rzeczywistych jest więc uzupełnieniem zbioru liczb wymiernych o tego rodzaju luki. Klasycznym jego modelem jest tzw. prosta rzeczywista, czy inaczej oś liczbowa. Liczby rzeczywiste tworzą ciało i z punktu widzenia algebry są one rozszerzeniem ciała liczb wymiernych. (pl)
  • Die reellen Zahlen bilden einen in der Mathematik bedeutenden Zahlenbereich. Er ist eine Erweiterung des Bereichs der rationalen Zahlen, der Brüche, womit die Maßzahlen der Messwerte für übliche physikalische Größen wie zum Beispiel Länge, Temperatur oder Masse als reelle Zahlen aufgefasst werden können. Die reellen Zahlen haben gegenüber den rationalen Zahlen besondere topologische Eigenschaften. Diese bestehen unter anderem darin, dass für jedes „stetige Problem“, für das in einem gewissen Sinne beliebig gute, nahe beieinander liegende näherungsweise Lösungen in Form von reellen Zahlen existieren, auch eine reelle Zahl als exakte Lösung existiert. Daher können sie in der Analysis, der Topologie und der Geometrie vielseitig eingesetzt werden. Beispielsweise können Längen und Flächeninhalte sehr vielfältiger geometrischer Objekte sinnvoll als reelle Zahlen, nicht aber etwa als rationale Zahlen definiert werden. Wenn in empirischen Wissenschaften mathematische Konzepte – wie zum Beispiel Längen – zur Beschreibung eingesetzt werden, spielt daher auch dort die Theorie der reellen Zahlen oft eine wichtige Rolle. (de)
  • En matemáticas, el conjunto de los números reales (denotado por ℝ) incluye tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como: √5, π, el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII. Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal. Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento prescindían del rigor y fundamento lógico, tan exigente en los enfoques teóricos de la actualidad, y se usaban expresiones como «pequeño», «límite», «se acerca» sin una definición precisa. Esto llevó a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa para la matemática, la cual consistió de definiciones formales y rigurosas (aunque ciertamente técnicas) del concepto de número real. En una sección posterior se describirán dos de las definiciones precisas más usuales actualmente: clases de equivalencia de sucesiones de Cauchy de números racionales y cortaduras de Dedekind. (es)
  • En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels la racine carrée de 2, π et e. La notion de nombre réel émerge progressivement de la manipulation des rapports de grandeurs géométriques autres que les rapports d'entiers depuis leur prise en compte par Eudoxe de Cnide au IVe siècleav. J.-C. Elle s'insère aussi dans l'approximation des solutions de problèmes algébriques et donne même lieu, au milieu du XIXe siècle, à la mise en évidence de nombres transcendants. Mais la définition des nombres réels n'est formalisée que quelques décennies plus tard avec les constructions de Dedekind d'une part et de Cantor et Méray d'autre part. L'ensemble des nombres réels, noté ℝ, est alors un corps totalement ordonné, c'est-à-dire qu'il est muni des quatre opérations arithmétiques satisfaisant les mêmes règles que celles sur les fractions et ces opérations sont compatibles avec la relation d'ordre. Mais il satisfait en plus la propriété de la borne supérieure qui fonde l'analyse réelle.Enfin, cet ensemble est caractérisé par Hilbert comme dernier corps archimédien. Dans la droite réelle achevée les valeurs infinies ne satisfont plus les règles opératoires de corps, l'extension au corps des nombres complexes rend impossible la relation d'ordre total compatible, tandis que l'analyse non standard adjoint des nombres infiniment petits qui invalident le caractère archimédien. L'adjectif « réel » est utilisé pour qualifier des nombres dès le XVIIe siècle, mais il n'est explicitement défini par opposition aux nombres imaginaires qu'à la fin du XIXe siècle Il a aussi été opposé à « nombre formel » dans certaines traités de théologie ou de philosophie de la même époque. (fr)
  • 数学における実数(じっすう、 英: real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表す言葉として導入されたものである。 (ja)
  • Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych. Pitagorejczycy zauważyli, że długość przekątnej kwadratu o boku długości 1 nie daje się wyrazić przy pomocy ilorazu dwóch liczb całkowitych (zob. dowód niewymierności pierwiastka z 2). Podobnie liczba pi, którą można definiować jako stosunek długości dowolnego okręgu do jego średnicy, nie jest liczbą wymierną. Zbiór liczb rzeczywistych jest więc uzupełnieniem zbioru liczb wymiernych o tego rodzaju luki. Klasycznym jego modelem jest tzw. prosta rzeczywista, czy inaczej oś liczbowa. Liczby rzeczywiste tworzą ciało i z punktu widzenia algebry są one rozszerzeniem ciała liczb wymiernych. (pl)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 20646438 (xsd:integer)
dbo:wikiPageRevisionID
  • 707293701 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • Die reellen Zahlen bilden einen in der Mathematik bedeutenden Zahlenbereich. Er ist eine Erweiterung des Bereichs der rationalen Zahlen, der Brüche, womit die Maßzahlen der Messwerte für übliche physikalische Größen wie zum Beispiel Länge, Temperatur oder Masse als reelle Zahlen aufgefasst werden können. Die reellen Zahlen haben gegenüber den rationalen Zahlen besondere topologische Eigenschaften. Diese bestehen unter anderem darin, dass für jedes „stetige Problem“, für das in einem gewissen Sinne beliebig gute, nahe beieinander liegende näherungsweise Lösungen in Form von reellen Zahlen existieren, auch eine reelle Zahl als exakte Lösung existiert. Daher können sie in der Analysis, der Topologie und der Geometrie vielseitig eingesetzt werden. Beispielsweise können Längen und Flächeninhalt (de)
  • En matemáticas, el conjunto de los números reales (denotado por ℝ) incluye tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como: √5, π, el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII. (es)
  • En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels la racine carrée de 2, π et e. (fr)
  • 数学における実数(じっすう、 英: real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表す言葉として導入されたものである。 (ja)
  • Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych. (pl)
  • Die reellen Zahlen bilden einen in der Mathematik bedeutenden Zahlenbereich. Er ist eine Erweiterung des Bereichs der rationalen Zahlen, der Brüche, womit die Maßzahlen der Messwerte für übliche physikalische Größen wie zum Beispiel Länge, Temperatur oder Masse als reelle Zahlen aufgefasst werden können. Die reellen Zahlen haben gegenüber den rationalen Zahlen besondere topologische Eigenschaften. Diese bestehen unter anderem darin, dass für jedes „stetige Problem“, für das in einem gewissen Sinne beliebig gute, nahe beieinander liegende näherungsweise Lösungen in Form von reellen Zahlen existieren, auch eine reelle Zahl als exakte Lösung existiert. Daher können sie in der Analysis, der Topologie und der Geometrie vielseitig eingesetzt werden. Beispielsweise können Längen und Flächeninhalt (de)
  • En matemáticas, el conjunto de los números reales (denotado por ℝ) incluye tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como: √5, π, el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII. (es)
  • En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels la racine carrée de 2, π et e. (fr)
  • 数学における実数(じっすう、 英: real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表す言葉として導入されたものである。 (ja)
  • Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych. (pl)
rdfs:label
  • عدد حقيقي (ar)
  • Reelle Zahl (de)
  • Número real (es)
  • Nombre réel (fr)
  • Numero reale (it)
  • 実数 (ja)
  • Reëel getal (nl)
  • Liczby rzeczywiste (pl)
  • Número real (pt)
  • Вещественное число (ru)
  • 实数 (zh)
  • Real number (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of