In mathematics, a polynomial is an expression consisting of variables and coefficients which only employs the operations of addition, subtraction, multiplication, and non-negative integer exponents. An example of a polynomial of a single variable x is x2 − 4x + 7. An example in three variables is x3 + 2xyz2 − yz + 1.

Property Value
dbo:abstract
  • In mathematics, a polynomial is an expression consisting of variables and coefficients which only employs the operations of addition, subtraction, multiplication, and non-negative integer exponents. An example of a polynomial of a single variable x is x2 − 4x + 7. An example in three variables is x3 + 2xyz2 − yz + 1. Polynomials appear in a wide variety of areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated problems in the sciences; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, central concepts in algebra and algebraic geometry. (en)
  • في الرياضيات، متعددة الحدود أو كثيرة الحدود (بالإنجليزية: Polynomial) هو تركيب جبري يتكون من واحد أو أكثر من المعاملات والمتغيرات، يتم بناؤه باستخدام عمليات الجمع والطرح والضرب والأسس الصحيحة غيرالسالبة. على سبيل المثال، x2 − x/4 + 7 هي متعددة للحدود (وقد تسمى دالة تربيعية)، بينما x2 − 4/x + 7x3/2 ليست بمتعددة للحدود، لأن الحد الثاني يتضمن قسمة على المتغير x، (أي 4/x)، ولأن أيضا الحد الثالث يحتوي على أُس ليس بعدد صحيح طبيعي (3/2).انظر إلى حلقة متعددات الحدود (ar)
  • En matemáticas, un polinomio (del latín polynomium, y este del griego, πολυς polys ‘muchos’ y νόμος nómos ‘regla’, ‘prescripción’, ‘distribución’) es una expresión matemática constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variables indeterminadas. Es frecuente el término polinómico (ocasionalmente también el anglicismo polinomial), como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinómico, etc. Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo y análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la física, química, economía y las ciencias sociales. En álgebra abstracta, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en teoría de números algebraicos y geometría algebraica. (es)
  • 多項式(たこうしき、英: polynomial)は定数および変数あるいは不定元の和と積のみからなり、代数学の重要な対象となる数学的概念である。歴史的にも現代代数学の成立に大きな役割を果たした。多項式とは のような形をした式である。加法や減法を全て加法として次の式のように考えた場合、 加法の記号で区切られた式の "3x3", "−7x2", "2x", "-23" のことを項(こう、term)と呼び、複数の項を足し合わせることでできる式であることから多項式と呼ばれる。 一つの項だけからできている式を単項式(たんこうしき、monomial)と呼び、複数の項からできているものだけを多項式と呼んで、単項式と多項式を併せて整式と呼ぶ流儀もある。 (ja)
  • Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym. Wielomiany, ze względu na swoją prostotę i dobrze poznane własności, są używane w wielu działach matematyki. Przykładowo w analizie matematycznej pomocne jest przedstawienie funkcji danego rodzaju w postaci ciągu wielomianów (bądź szeregu), w algebrze są one centralnym punktem zainteresowań w teorii Galois, a stąd służą w geometrii jako środek dowodowy przy wykazywaniu konstruowalności różnych obiektów; służą też kodowaniu własności rozmaitych obiektów (np. wielomian charakterystyczny przekształcenia liniowego). (pl)
  • 多项式是代数学中的基础概念,是由称为不定元的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。例如X2 - 3X + 4就是一个多项式。多项式是整式的一种。不定元只有一个的多项式称为一元多项式;不定元不止一个的多项式称为多元多项式。多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 23000 (xsd:integer)
dbo:wikiPageRevisionID
  • 707851055 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • في الرياضيات، متعددة الحدود أو كثيرة الحدود (بالإنجليزية: Polynomial) هو تركيب جبري يتكون من واحد أو أكثر من المعاملات والمتغيرات، يتم بناؤه باستخدام عمليات الجمع والطرح والضرب والأسس الصحيحة غيرالسالبة. على سبيل المثال، x2 − x/4 + 7 هي متعددة للحدود (وقد تسمى دالة تربيعية)، بينما x2 − 4/x + 7x3/2 ليست بمتعددة للحدود، لأن الحد الثاني يتضمن قسمة على المتغير x، (أي 4/x)، ولأن أيضا الحد الثالث يحتوي على أُس ليس بعدد صحيح طبيعي (3/2).انظر إلى حلقة متعددات الحدود (ar)
  • 多项式是代数学中的基础概念,是由称为不定元的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。例如X2 - 3X + 4就是一个多项式。多项式是整式的一种。不定元只有一个的多项式称为一元多项式;不定元不止一个的多项式称为多元多项式。多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。 (zh)
  • In mathematics, a polynomial is an expression consisting of variables and coefficients which only employs the operations of addition, subtraction, multiplication, and non-negative integer exponents. An example of a polynomial of a single variable x is x2 − 4x + 7. An example in three variables is x3 + 2xyz2 − yz + 1. (en)
  • En matemáticas, un polinomio (del latín polynomium, y este del griego, πολυς polys ‘muchos’ y νόμος nómos ‘regla’, ‘prescripción’, ‘distribución’) es una expresión matemática constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variables indeterminadas. (es)
  • 多項式(たこうしき、英: polynomial)は定数および変数あるいは不定元の和と積のみからなり、代数学の重要な対象となる数学的概念である。歴史的にも現代代数学の成立に大きな役割を果たした。多項式とはのような形をした式である。加法や減法を全て加法として次の式のように考えた場合、加法の記号で区切られた式の "3x3", "−7x2", "2x", "-23" のことを項(こう、term)と呼び、複数の項を足し合わせることでできる式であることから多項式と呼ばれる。一つの項だけからできている式を単項式(たんこうしき、monomial)と呼び、複数の項からできているものだけを多項式と呼んで、単項式と多項式を併せて整式と呼ぶ流儀もある。 (ja)
  • Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Wielomiany, ze względu na swoją prostotę i dobrze poznane własności, są używane w wielu działach matematyki. Przykładowo w analizie matematycznej pomocne jest przedstawienie funkcji danego rodzaju w postaci ciągu wielomianów (bądź szeregu), w algebrze są one centralnym punktem zainteresowań w teorii Galois, a stąd służą w geometrii jako środek dowodowy przy wykazywaniu konstruowalności różnych obiektów; służą też kodowaniu własności rozmaitych obiektów (np. wielomian charakterystyczny przekształcenia liniowego). (pl)
rdfs:label
  • Polynomial (en)
  • متعددة الحدود (ar)
  • Polynom (de)
  • Polinomio (es)
  • Polynôme (fr)
  • Polinomio (it)
  • 多項式 (ja)
  • Polynoom (nl)
  • Wielomian (pl)
  • Polinómio (pt)
  • Многочлен (ru)
  • 多項式 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:knownFor of
is foaf:primaryTopic of