In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the which give rise to that have also been called non-Euclidean geometry.

Property Value
dbo:abstract
  • In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the which give rise to that have also been called non-Euclidean geometry. The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line ℓ and a point A, which is not on ℓ, there is exactly one line through A that does not intersect ℓ. In hyperbolic geometry, by contrast, there are infinitely many lines through A not intersecting ℓ, while in elliptic geometry, any line through A intersects ℓ. Another way to describe the differences between these geometries is to consider two straight lines indefinitely extended in a two-dimensional plane that are both perpendicular to a third line: * In Euclidean geometry the lines remain at a constant distance from each other (meaning that a line drawn perpendicular to one line at any point will intersect the other line and the length of the line segment joining the points of intersection remains constant) and are known as parallels. * In hyperbolic geometry they "curve away" from each other, increasing in distance as one moves further from the points of intersection with the common perpendicular; these lines are often called ultraparallels. * In elliptic geometry the lines "curve toward" each other and intersect. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) يعبر مصطلح الهندسة اللاإقليدية في علم الرياضيات عن الهندسة الاهليليجية وهندسة القطوع الزائدة والتي هي مقابل الهندسة الإقليدية. الفرق الأساسي بين الهندسة الإقليدية والهندسة اللاإقليدية هو في طبيعة المستقيمات المتوازية. حيث تنص مسلمة إقليدس الخامسة أن في المستوي الثنائي الأبعاد من أجل أي مستقيم l ونقطة A لا تقع على المستقيم l يوجد مستقيم وحيد يمر من A ولا يتقاطع مع l. في هندسة القطع الزائد يوجد عدد لانهائي من المستقيمات التي تمر بـ A بدون أن تقطع l بينما في الهندسة الاهليليجية فإن المستقيمين المتوازيين يتقاربان ومن ثم يتقاطعان. (ar)
  • Die nichteuklidischen Geometrien sind Spezialisierungen der absoluten Geometrie. Sie unterscheiden sich von der euklidischen Geometrie, die ebenfalls als eine Spezialisierung der absoluten Geometrie formuliert werden kann, dadurch, dass in ihnen das Parallelenaxiom nicht gilt. (de)
  • Se denomina geometría no euclidiana o no euclídea, a cualquier forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. No existe un solo tipo de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio es la misma en cada punto, en los que los puntos del espacio son indistinguibles pueden distinguirse tres tipos de geometrías: * La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero (es decir se supone en un espacio plano por lo que la suma de los tres ángulos interiores de un triángulo da siempre 180°.). * La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es inferior a 180°). * La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es mayor a 180°). Todos estos son casos particulares de geometrías riemannianas, en los que la curvatura es constante, si se admite la posibilidad de que la curvatura intrínseca de la geometría varíe de un punto a otro se tiene un caso de geometría riemanniana general, como sucede en la teoría de la relatividad general donde la gravedad causa una curvatura no homogénea en el espacio-tiempo, siendo mayor la curvatura cerca de las concentraciones de masa, lo cual es percibido como un campo gravitatorio atractivo. (es)
  • En mathématiques, on appelle géométrie non euclidienne une théorie géométrique ayant recours à tous les axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues de la volonté de démontrer le cinquième postulat (le postulat d'Euclide) qui semblait peu satisfaisant car trop complexe, et peut-être redondant. Ce à quoi Saccheri, procédant par l'absurde, avait échoué à la fin du XVIIe siècle. Dans les Éléments d'Euclide, le postulat ressemble à la conclusion d'un théorème, mais qui ne comporterait pas de démonstration : Si une droite, tombant sur deux droites, fait les angles intérieurs du même côté plus petits que deux droits, ces droites, prolongées à l'infini, se rencontreront du côté où les angles sont plus petits que deux droits. et qu'on peut comprendre comme : Par un point extérieur à une droite, il passe toujours une parallèle à cette droite, et une seule. Durant plusieurs siècles, la géométrie euclidienne a été utilisée sans que l'on mette en doute sa validité. Elle a même été longtemps considérée comme l'archétype du raisonnement logico-déductif. Elle présentait en effet l'avantage de définir les propriétés intuitives des objets géométriques dans une construction mathématique rigoureuse. (fr)
  • Una geometria non euclidea è una geometria costruita negando o non accettando alcuni postulati euclidei.Viene detta anche metageometria. (it)
  • 非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。 (ja)
  • Niet-euclidische meetkunde is meetkunde waarbij het vijfde postulaat van Euclides (het parallellenpostulaat) niet wordt aangenomen. Euclides ging bij zijn meetkunde uit van een aantal postulaten (axioma's). De meeste daarvan zijn eenvoudig, maar het vijfde vormt een uitzondering. Het postulaat heeft diverse vormen, maar de bekendste is waarschijnlijk "Gegeven een rechte l en een punt P dat niet op l ligt, dan is er in het vlak door l en P maar één rechte door P die l niet snijdt." (Euclides' oorspronkelijke vorm was gecompliceerder.) Er zijn twee typen niet-euclidische meetkunde: * In hyperbolische meetkunde gaan er door P oneindig veel lijnen die l niet snijden * In elliptische meetkunde gaat er door P geen lijn die l niet snijdt: alle lijnen snijden elkaar. Overigens is het voor elliptische meetkunde nodig ook andere postulaten van Euclides aan te passen. Lange tijd heeft men geprobeerd het parallellenpostulaat te bewijzen uit de andere axioma's, maar achteraf bleken alle bewijzen fout, doordat er ergens toch een 'evident' feit was gebruikt dat echter niet uit de overblijvende axioma's volgt, en dus equivalent was aan het parallellenpostulaat. In de 19e eeuw werd de stap genomen het parallellenpostulaat te laten vallen. Drie wiskundigen: de Rus Nikolaj Ivanovitsj Lobatsjevski (publicatie in 1829), de Hongaar János Bolyai (publicatie in 1832) en de Duitser Carl Friedrich Gauss (ongepubliceerd, maar voor 1832) ontdekten ieder voor zich de principes van de hyperbolische meetkunde. In 1733 had overigens Giovanni Saccheri al een flink aantal stellingen afgeleid, in een poging het parallellenpostulaat door middel van reductio ad absurdum te bewijzen. De elliptische meetkunde werd geïntroduceerd door Bernhard Riemann in 1854, als onderdeel van een veel grotere klasse van meetkunden (zie de Riemann-meetkunde). (nl)
  • Geometria nieeuklidesowa – geometria, która nie spełnia co najmniej jednego z aksjomatów geometrii euklidesowej. Może ona spełniać tylko część z nich, przy czym mogą również obowiązywać w niej inne, sprzeczne z aksjomatami i twierdzeniami geometrii Euklidesa. Przykładami geometrii nieeuklidesowych są: * geometria hiperboliczna (geometria Łobaczewskiego), * geometria eliptyczna (geometria sferyczna), * geometria Riemanna będąca uogólnieniem powyższych. Wielki wkład do rozwoju tych geometrii wnieśli: Nikołaj Łobaczewski, János Bolyai, Carl Friedrich Gauss, Georg Riemann oraz David Hilbert. (pl)
  • Em matemática, uma geometria não euclidiana é uma geometria baseada num sistema axiomático distinto da geometria euclidiana. Modificando o axioma das paralelas, que postula que por um ponto exterior a uma reta passa exatamente uma reta paralela à inicial, obtêm-se as geometrias elíptica e hiperbólica. Na geometria elíptica não há nenhuma reta paralela à inicial, enquanto que na geometria hiperbólica existe uma infinidade de rectas paralelas à inicial que passam no mesmo ponto. Na geometria elíptica a soma dos ângulos internos de um triangulo é maior que dois ângulos retos, enquanto na geometria hiperbólica esta soma é menor que dois ângulos retos. Na elíptica, temos que a circunferência de um círculo é menor do que PI vezes o seu diâmetro, enquanto na hiperbólica esta circunferência é maior que PI vezes o diâmetro. O crédito pela descoberta das geometrias não euclidianas geralmente é atrelado às figuras dos matemáticos Carl Friedrich Gauss, e Bernhard Riemann. (pt)
  • Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии. Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — сферической, отрицательная — геометрии Лобачевского. (ru)
  • 古希腊数学家欧几里得的《几何原本》提出了五条公设。頭四條公設分別為: 1. * 由任意一點到任意一點可作直線。 2. * 一條有限直線可以繼續延長。 3. * 以任意點為心及任意的距離可以畫圓。 4. * 凡直角都相等。 第五条公设说:同一平面内一条直线a和另外两条直线b.c相交,若在a某一侧的两个内角的和小于两直角,则b.c两直线经无限延长后在該侧相交。 长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明? (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 58610 (xsd:integer)
dbo:wikiPageRevisionID
  • 739734536 (xsd:integer)
dbp:id
  • 4669 (xsd:integer)
dbp:title
  • Non-euclidean geometry
dct:subject
rdf:type
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) يعبر مصطلح الهندسة اللاإقليدية في علم الرياضيات عن الهندسة الاهليليجية وهندسة القطوع الزائدة والتي هي مقابل الهندسة الإقليدية. الفرق الأساسي بين الهندسة الإقليدية والهندسة اللاإقليدية هو في طبيعة المستقيمات المتوازية. حيث تنص مسلمة إقليدس الخامسة أن في المستوي الثنائي الأبعاد من أجل أي مستقيم l ونقطة A لا تقع على المستقيم l يوجد مستقيم وحيد يمر من A ولا يتقاطع مع l. في هندسة القطع الزائد يوجد عدد لانهائي من المستقيمات التي تمر بـ A بدون أن تقطع l بينما في الهندسة الاهليليجية فإن المستقيمين المتوازيين يتقاربان ومن ثم يتقاطعان. (ar)
  • Die nichteuklidischen Geometrien sind Spezialisierungen der absoluten Geometrie. Sie unterscheiden sich von der euklidischen Geometrie, die ebenfalls als eine Spezialisierung der absoluten Geometrie formuliert werden kann, dadurch, dass in ihnen das Parallelenaxiom nicht gilt. (de)
  • Una geometria non euclidea è una geometria costruita negando o non accettando alcuni postulati euclidei.Viene detta anche metageometria. (it)
  • 非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。 (ja)
  • Geometria nieeuklidesowa – geometria, która nie spełnia co najmniej jednego z aksjomatów geometrii euklidesowej. Może ona spełniać tylko część z nich, przy czym mogą również obowiązywać w niej inne, sprzeczne z aksjomatami i twierdzeniami geometrii Euklidesa. Przykładami geometrii nieeuklidesowych są: * geometria hiperboliczna (geometria Łobaczewskiego), * geometria eliptyczna (geometria sferyczna), * geometria Riemanna będąca uogólnieniem powyższych. Wielki wkład do rozwoju tych geometrii wnieśli: Nikołaj Łobaczewski, János Bolyai, Carl Friedrich Gauss, Georg Riemann oraz David Hilbert. (pl)
  • Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии. Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — сферической, отрицательная — геометрии Лобачевского. (ru)
  • 古希腊数学家欧几里得的《几何原本》提出了五条公设。頭四條公設分別為: 1. * 由任意一點到任意一點可作直線。 2. * 一條有限直線可以繼續延長。 3. * 以任意點為心及任意的距離可以畫圓。 4. * 凡直角都相等。 第五条公设说:同一平面内一条直线a和另外两条直线b.c相交,若在a某一侧的两个内角的和小于两直角,则b.c两直线经无限延长后在該侧相交。 长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明? (zh)
  • In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the which give rise to that have also been called non-Euclidean geometry. (en)
  • Se denomina geometría no euclidiana o no euclídea, a cualquier forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. No existe un solo tipo de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio es la misma en cada punto, en los que los puntos del espacio son indistinguibles pueden distinguirse tres tipos de geometrías: (es)
  • En mathématiques, on appelle géométrie non euclidienne une théorie géométrique ayant recours à tous les axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues de la volonté de démontrer le cinquième postulat (le postulat d'Euclide) qui semblait peu satisfaisant car trop complexe, et peut-être redondant. Ce à quoi Saccheri, procédant par l'absurde, avait échoué à la fin du XVIIe siècle. et qu'on peut comprendre comme : (fr)
  • Niet-euclidische meetkunde is meetkunde waarbij het vijfde postulaat van Euclides (het parallellenpostulaat) niet wordt aangenomen. Euclides ging bij zijn meetkunde uit van een aantal postulaten (axioma's). De meeste daarvan zijn eenvoudig, maar het vijfde vormt een uitzondering. Het postulaat heeft diverse vormen, maar de bekendste is waarschijnlijk "Gegeven een rechte l en een punt P dat niet op l ligt, dan is er in het vlak door l en P maar één rechte door P die l niet snijdt." (Euclides' oorspronkelijke vorm was gecompliceerder.) Er zijn twee typen niet-euclidische meetkunde: (nl)
  • Em matemática, uma geometria não euclidiana é uma geometria baseada num sistema axiomático distinto da geometria euclidiana. Modificando o axioma das paralelas, que postula que por um ponto exterior a uma reta passa exatamente uma reta paralela à inicial, obtêm-se as geometrias elíptica e hiperbólica. Na geometria elíptica não há nenhuma reta paralela à inicial, enquanto que na geometria hiperbólica existe uma infinidade de rectas paralelas à inicial que passam no mesmo ponto. Na geometria elíptica a soma dos ângulos internos de um triangulo é maior que dois ângulos retos, enquanto na geometria hiperbólica esta soma é menor que dois ângulos retos. Na elíptica, temos que a circunferência de um círculo é menor do que PI vezes o seu diâmetro, enquanto na hiperbólica esta circunferência é maio (pt)
rdfs:label
  • Non-Euclidean geometry (en)
  • هندسة لاإقليدية (ar)
  • Nichteuklidische Geometrie (de)
  • Geometría no euclidiana (es)
  • Géométrie non euclidienne (fr)
  • Geometria non euclidea (it)
  • 非ユークリッド幾何学 (ja)
  • Niet-euclidische meetkunde (nl)
  • Geometria nieeuklidesowa (pl)
  • Geometria não euclidiana (pt)
  • Неевклидова геометрия (ru)
  • 非欧几里得几何 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is owl:differentFrom of
is foaf:primaryTopic of