Modal logic is a type of formal logic primarily developed in the 1960s that extends classical propositional and predicate logic to include operators expressing modality. Modals—words that express modalities—qualify a statement. For example, the statement "John is happy" might be qualified by saying that John is usually happy, in which case the term "usually" is functioning as a modal. The traditional alethic modalities, or modalities of truth, include possibility ("Possibly, p", "It is possible that p"), necessity ("Necessarily, p", "It is necessary that p"), and impossibility ("Impossibly, p", "It is impossible that p"). Other modalities that have been formalized in modal logic include temporal modalities, or modalities of time (notably, "It was the case that p", "It has always been that

Property Value
dbo:abstract
  • المنطق الطوري أو منطق الموجهات نوع من المنطق الذي يتعامل مع " المحتمل " و" الممكن" والذي يظهر في مقولات لغوية من قبيل:"من المتوقع" و"من المفترض" و"ربما". (ar)
  • Modal logic is a type of formal logic primarily developed in the 1960s that extends classical propositional and predicate logic to include operators expressing modality. Modals—words that express modalities—qualify a statement. For example, the statement "John is happy" might be qualified by saying that John is usually happy, in which case the term "usually" is functioning as a modal. The traditional alethic modalities, or modalities of truth, include possibility ("Possibly, p", "It is possible that p"), necessity ("Necessarily, p", "It is necessary that p"), and impossibility ("Impossibly, p", "It is impossible that p"). Other modalities that have been formalized in modal logic include temporal modalities, or modalities of time (notably, "It was the case that p", "It has always been that p", "It will be that p", "It will always be that p"), deontic modalities (notably, "It is obligatory that p", and "It is permissible that p"), epistemic modalities, or modalities of knowledge ("It is known that p") and doxastic modalities, or modalities of belief ("It is believed that p"). A formal modal logic represents modalities using modal operators. For example, "It might rain today" and "It is possible that rain will fall today" both contain the notion of possibility. In a modal logic this is represented as an operator, Possibly, attached to the sentence "It will rain today". The basic unary (1-place) modal operators are usually written □ for Necessarily and ◇ for Possibly. In a classical modal logic, each can be expressed by the other with negation: Thus it is possible that it will rain today if and only if it is not necessary that it will not rain today; and it is necessary that it will rain today if and only if it is not possible that it will not rain today. Alternative symbols used for the modal operators are "L" for Necessarily and "M" for Possibly. (en)
  • Die Modallogik ist derjenige Zweig der Logik, der sich mit den Folgerungen um die Modalbegriffe möglich und notwendig befasst. So lassen sich innerhalb der Modallogik nicht nur Aussagen wie „Es regnet“ oder „Alle Kreise sind rund“ analysieren, sondern auch Aussagen wie „Möglicherweise regnet es“ und „Notwendigerweise sind alle Kreise rund“. (de)
  • Una lógica modal es un sistema formal que intenta capturar el comportamiento deductivo de algún grupo de operadores modales. Los operadores modales son expresiones que califican la verdad de los juicios. Por ejemplo, en la oración «es necesario que 2+2=4», la expresión «es necesario que» es un operador modal que califica de necesaria a la verdad del juicio «2+2=4». En un sentido más restringido, sin embargo, se llama lógica modal al sistema formal que se ocupa de las expresiones «es necesario que» y «es posible que». Este artículo trata exclusivamente sobre este sistema formal. Otros sistemas de lógica modal conocidos son la lógica deóntica, la lógica temporal, la lógica epistémica y la lógica doxástica. (es)
  • En logique, une logique modale est une logique qui formalise un ou plusieurs éléments modaux, c'est-à-dire de spécifier des qualités du vrai. Une proposition comme « Il pleut » peut être précédé d'une modalité ː * Il est nécessaire qu’il pleuve ; * Demain, il pleut ; * Christophe Colomb croit qu'il pleut ; * Il est démontré qu’il pleuve ; * Il est obligatoire qu’il pleuve. Il existe une variété de logiques modales comme les logiques temporelles, la logique épistémique (logique de connaissance). En informatique, la logique modale est intéressante pour son expressivité et les aspects algorithmiques. Par exemple, la logique temporelle est utilisée pour spécifier des programmes puis les vérifier. (fr)
  • Nell'ambito della logica formale, si indica come logica modale una qualsiasi logica in cui è possibile esprimere il "modo" in cui una proposizione è vera o falsa. Generalmente la logica modale si occupa dei concetti di possibilità e necessità, ma può essere utilizzata anche per esprimere l'obbligo morale o la credenza. Esempi di proposizioni modali sono quindi "È possibile che piova" o "È necessario che Socrate sia mortale o non mortale", ma anche "È doveroso andare a votare" o "Socrate crede che piova". Gli operatori modali basilari sono per esprimere la necessità e la possibilità. Nella logica modale classica, ciascuno dei due operatori può essere espresso nei termini dell'altro e dell'operatore di negazione. Quindi si dirà che "È possibile che Socrate sia stato ucciso" se e solo se "Non è necessario che Socrate non sia stato ucciso". Lo studio delle logiche modali trova applicazione in filosofia, nell'investigazione dei fondamenti della matematica, in informatica e nelle scienze cognitive. (it)
  • Modale logica's kunnen worden gezien als een uitbreiding van andere logica's, zoals de propositielogica of de predicatenlogica. Er worden extra operatoren gebruikt, die modaliteiten uitdrukken. Oorspronkelijk waren dit de modaliteiten het is mogelijk dat en het is noodzakelijk dat, maar later zijn talloze andere modaliteiten voorgesteld, om tijd, geloof, onzekerheid, enzovoorts te kunnen weergeven. Een werk dat aan de basis ligt van de modale logica's, is A Survey of Symbolic Logic van de Amerikaanse filosoof Clarence Irving Lewis (1918). Voor de semantiek van modale logica's worden vaak Kripkemodellen gebruikt. (nl)
  • 様相論理(ようそうろんり、英: modal logic)は、いわゆる古典論理の対象でない、様相(modal)と呼ばれる「〜は必然的に真」や「〜は可能である」といった必然性や可能性などを扱う論理である(様相論理は、部分の真理値からは全体の真理値が決定されない内包論理の一種と見ることができる)。 その歴史は古くアリストテレスまで遡ることができるが、形式的な扱いは数理論理学以降、非古典論理としてである。 様相論理では一般に、標準的な論理体系に「~は必然的である」ことを意味する必然性演算子 と、「~は可能である」ことを意味する可能性演算子 のふたつの演算子が追加される。 (ja)
  • Logika modalna – teoria logiczna, która bada pojęcia możliwości, konieczności i ich wariantów. Niekiedy termin "logika modalna" rozumie się szerszej, włączając w jego obręb logiki epistemiczne, logiki temporalne, logiki deontyczne i logiki programów – niniejszy artykuł omawia jedynie logiki modalne w sensie wąskim (logiki modalne aletyczne) na przykładzie systemu S5. (pl)
  • Lógica modal se refere a qualquer sistema de lógica formal que procure lidar com modalidades (tratar de modos quanto a tempo, possibilidade, probabilidade, etc.). Tradicionalmente, as modalidades mais comuns são possibilidade e necessidade. Lógicas para lidar com outros termos relacionados, como probabilidade, eventualidade, padronização, poder, poderia, deve, são por extensão também chamadas de lógicas modais, já que elas podem ser tratadas de maneira similar. Uma lógica modal formal representa modalidades usando operadores modais. Por exemplo, "Era possível o assassinato de Arnaldo" e "Arnaldo foi possivelmente assassinado" são exemplos que contêm a noção de possibilidade. Formalmente, essa noção é tratada como o operador modal Possível, aplicado à sentença "Arnaldo foi assassinado". Normalmente os operadores modais básicos unários são escritos como (ou L) para Necessário e (ou M) para Possível. Nas lógicas modais clássicas, cada um pode ser expresso em função do outro e da negação: Para a formalização semântica da linguagem modal básica, veja semântica de Kripke. (pt)
  • Модальная логика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы). Модальности бывают разные; наиболее распространены временны́е («когда-то в будущем», «всегда в прошлом», «всегда» и т. д.) и пространственные («здесь», «где-то», «близко» и т. д.). Например, модальная логика способна оперировать утверждениями типа «Москва всегда была столицей России» или «Санкт-Петербург, когда-то в прошлом, был столицей России», которые невозможно или крайне сложно выразить в немодальном языке. Кроме временных и пространственных модальностей есть и другие, например «известно, что» (логика знания) или «можно доказать, что» (логика доказуемости). Обычно для обозначения модального оператора используется и двойственный к нему : Это отражает то, что сказать «Москва когда-то была столицей России» то же самое, что сказать «не верно, что Москва никогда не была столицей России». (ru)
  • 模态逻辑,或者叫(不很常见)内涵逻辑,是处理用模态如“可能”、“或许”、“可以”、“一定”、“必然”等限定的句子的逻辑。模态逻辑可以用语义的“内涵性”来描述其特征:复杂公式的真值不能由子公式的真值来决定的。允许这种决定性的逻辑是“外延性的”,经典逻辑就是外延性的例子。模态算子不能使用外延语义来形式化:“乔治·布什是美国总统”和“2 + 2 = 4”是真的,但是“乔治·布什必然是美国总统”是假的,而“2 + 2 = 4是必然的”是真的。 形式模态逻辑使用模态判决算子表示模态。基本的模态算子是 和 。(有时分别使用“L”和“M”)。它们的意义依赖于特定的模态逻辑,但它们总是以相互定义的方式来定义: (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 333365 (xsd:integer)
dbo:wikiPageRevisionID
  • 744439356 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • المنطق الطوري أو منطق الموجهات نوع من المنطق الذي يتعامل مع " المحتمل " و" الممكن" والذي يظهر في مقولات لغوية من قبيل:"من المتوقع" و"من المفترض" و"ربما". (ar)
  • Die Modallogik ist derjenige Zweig der Logik, der sich mit den Folgerungen um die Modalbegriffe möglich und notwendig befasst. So lassen sich innerhalb der Modallogik nicht nur Aussagen wie „Es regnet“ oder „Alle Kreise sind rund“ analysieren, sondern auch Aussagen wie „Möglicherweise regnet es“ und „Notwendigerweise sind alle Kreise rund“. (de)
  • 様相論理(ようそうろんり、英: modal logic)は、いわゆる古典論理の対象でない、様相(modal)と呼ばれる「〜は必然的に真」や「〜は可能である」といった必然性や可能性などを扱う論理である(様相論理は、部分の真理値からは全体の真理値が決定されない内包論理の一種と見ることができる)。 その歴史は古くアリストテレスまで遡ることができるが、形式的な扱いは数理論理学以降、非古典論理としてである。 様相論理では一般に、標準的な論理体系に「~は必然的である」ことを意味する必然性演算子 と、「~は可能である」ことを意味する可能性演算子 のふたつの演算子が追加される。 (ja)
  • Logika modalna – teoria logiczna, która bada pojęcia możliwości, konieczności i ich wariantów. Niekiedy termin "logika modalna" rozumie się szerszej, włączając w jego obręb logiki epistemiczne, logiki temporalne, logiki deontyczne i logiki programów – niniejszy artykuł omawia jedynie logiki modalne w sensie wąskim (logiki modalne aletyczne) na przykładzie systemu S5. (pl)
  • 模态逻辑,或者叫(不很常见)内涵逻辑,是处理用模态如“可能”、“或许”、“可以”、“一定”、“必然”等限定的句子的逻辑。模态逻辑可以用语义的“内涵性”来描述其特征:复杂公式的真值不能由子公式的真值来决定的。允许这种决定性的逻辑是“外延性的”,经典逻辑就是外延性的例子。模态算子不能使用外延语义来形式化:“乔治·布什是美国总统”和“2 + 2 = 4”是真的,但是“乔治·布什必然是美国总统”是假的,而“2 + 2 = 4是必然的”是真的。 形式模态逻辑使用模态判决算子表示模态。基本的模态算子是 和 。(有时分别使用“L”和“M”)。它们的意义依赖于特定的模态逻辑,但它们总是以相互定义的方式来定义: (zh)
  • Modal logic is a type of formal logic primarily developed in the 1960s that extends classical propositional and predicate logic to include operators expressing modality. Modals—words that express modalities—qualify a statement. For example, the statement "John is happy" might be qualified by saying that John is usually happy, in which case the term "usually" is functioning as a modal. The traditional alethic modalities, or modalities of truth, include possibility ("Possibly, p", "It is possible that p"), necessity ("Necessarily, p", "It is necessary that p"), and impossibility ("Impossibly, p", "It is impossible that p"). Other modalities that have been formalized in modal logic include temporal modalities, or modalities of time (notably, "It was the case that p", "It has always been that (en)
  • Una lógica modal es un sistema formal que intenta capturar el comportamiento deductivo de algún grupo de operadores modales. Los operadores modales son expresiones que califican la verdad de los juicios. Por ejemplo, en la oración «es necesario que 2+2=4», la expresión «es necesario que» es un operador modal que califica de necesaria a la verdad del juicio «2+2=4». (es)
  • En logique, une logique modale est une logique qui formalise un ou plusieurs éléments modaux, c'est-à-dire de spécifier des qualités du vrai. Une proposition comme « Il pleut » peut être précédé d'une modalité ː * Il est nécessaire qu’il pleuve ; * Demain, il pleut ; * Christophe Colomb croit qu'il pleut ; * Il est démontré qu’il pleuve ; * Il est obligatoire qu’il pleuve. (fr)
  • Modale logica's kunnen worden gezien als een uitbreiding van andere logica's, zoals de propositielogica of de predicatenlogica. Er worden extra operatoren gebruikt, die modaliteiten uitdrukken. Oorspronkelijk waren dit de modaliteiten het is mogelijk dat en het is noodzakelijk dat, maar later zijn talloze andere modaliteiten voorgesteld, om tijd, geloof, onzekerheid, enzovoorts te kunnen weergeven. Een werk dat aan de basis ligt van de modale logica's, is A Survey of Symbolic Logic van de Amerikaanse filosoof Clarence Irving Lewis (1918). (nl)
  • Nell'ambito della logica formale, si indica come logica modale una qualsiasi logica in cui è possibile esprimere il "modo" in cui una proposizione è vera o falsa. Generalmente la logica modale si occupa dei concetti di possibilità e necessità, ma può essere utilizzata anche per esprimere l'obbligo morale o la credenza. Esempi di proposizioni modali sono quindi "È possibile che piova" o "È necessario che Socrate sia mortale o non mortale", ma anche "È doveroso andare a votare" o "Socrate crede che piova". Gli operatori modali basilari sono per esprimere la necessità e (it)
  • Lógica modal se refere a qualquer sistema de lógica formal que procure lidar com modalidades (tratar de modos quanto a tempo, possibilidade, probabilidade, etc.). Tradicionalmente, as modalidades mais comuns são possibilidade e necessidade. Lógicas para lidar com outros termos relacionados, como probabilidade, eventualidade, padronização, poder, poderia, deve, são por extensão também chamadas de lógicas modais, já que elas podem ser tratadas de maneira similar. Normalmente os operadores modais básicos unários são escritos como (ou L) para Necessário e (pt)
  • Модальная логика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы). Модальности бывают разные; наиболее распространены временны́е («когда-то в будущем», «всегда в прошлом», «всегда» и т. д.) и пространственные («здесь», «где-то», «близко» и т. д.). Например, модальная логика способна оперировать утверждениями типа «Москва всегда была столицей России» или «Санкт-Петербург, когда-то в прошлом, был столицей России», которые невозможно или крайне сложно выразить в немодальном языке. Кроме временных и пространственных модальностей есть и другие, например «известно, что» (логика знания) или «можно доказать, что» (логика доказуемости). (ru)
rdfs:label
  • Modal logic (en)
  • منطق موجهات (ar)
  • Modallogik (de)
  • Lógica modal (es)
  • Logique modale (fr)
  • Logica modale (it)
  • 様相論理 (ja)
  • Modale logica (nl)
  • Logika modalna (pl)
  • Lógica modal (pt)
  • Модальная логика (ru)
  • 模态逻辑 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:mainInterest of
is dbo:notableIdea of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of