In statistics the Maxwell–Boltzmann distribution is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used in physics (in particular in statistical mechanics) for describing particle speeds in idealized gases where the particles move freely inside a stationary container without interacting with one another, except for very brief collisions in which they exchange energy and momentum with each other or with their thermal environment. Particle in this context refers to gaseous particles (atoms or molecules), and the system of particles is assumed to have reached thermodynamic equilibrium.While the distribution was first derived by Maxwell in 1860 on heuristic grounds, Boltzmann later carried out significant investigations into

Property Value
dbo:abstract
  • In statistics the Maxwell–Boltzmann distribution is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used in physics (in particular in statistical mechanics) for describing particle speeds in idealized gases where the particles move freely inside a stationary container without interacting with one another, except for very brief collisions in which they exchange energy and momentum with each other or with their thermal environment. Particle in this context refers to gaseous particles (atoms or molecules), and the system of particles is assumed to have reached thermodynamic equilibrium.While the distribution was first derived by Maxwell in 1860 on heuristic grounds, Boltzmann later carried out significant investigations into the physical origins of this distribution. A particle speed probability distribution indicates which speeds are more likely: a particle will have a speed selected randomly from the distribution, and is more likely to be within one range of speeds than another. The distribution depends on the temperature of the system and the mass of the particle.The Maxwell–Boltzmann distribution applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions, vortical flow, relativistic speed limits, and quantum exchange interactions) that can make their speed distribution different from the Maxwell–Boltzmann form. However, rarefied gases at ordinary temperatures behave very nearly like an ideal gas and the Maxwell speed distribution is an excellent approximation for such gases. Thus, it forms the basis of the Kinetic theory of gases, which provides a simplified explanation of many fundamental gaseous properties, including pressure and diffusion. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) توزيع ماكسويل-بولتزمان هو توزيع احتمالي يستخدم في تطبيقات عديدة في الفيزياء والكيمياء ، وفي الديناميكا الإحصائية .حيث تعتمد درجة حرارة نظام فيزيائي كبير على حركة مكوناته من الذرات أو الجزيئات و تتميز الجزيئات بسرعات مختلفة . وتختلف سرعة الجزيء من وقت لآخر بسبب اصطدامه بالجزيئات الأخرى. ويكون عدد الجزيئات التي تكون لها سرعة معينة ثابتاً عند وصول النظام إلى حالة الاتزان الحراري . ويمكننا تعيين فئة من تلك الجزيئات ذات السرعة الواحدة بحساب توزيع ماكسويل للسرعات عند درجة حرارة معلومة للنظام. ويـُعرف هذا التوزيع بتوزيع ماكسويل و بولتزمان . (ar)
  • Die Maxwell-Boltzmann-Verteilung oder auch maxwellsche Geschwindigkeitsverteilung ist eine Wahrscheinlichkeitsdichte der statistischen Physik und spielt in der Thermodynamik, speziell der kinetischen Gastheorie, eine wichtige Rolle. Sie beschreibt die statistische Verteilung des Betrags der Teilchengeschwindigkeiten in einem idealen Gas. Benannt wird sie nach James Clerk Maxwell und Ludwig Boltzmann, die sie 1860 erstmals hergeleitet haben. Sie ergibt sich aus der Boltzmann-Statistik. Wegen der vereinfachenden Voraussetzung eines idealen Gases zeigt die Geschwindigkeitsverteilung der Teilchen eines realen Gases Abweichungen. Jedoch ist bei geringer Dichte und hoher Temperatur die Maxwell-Boltzmann-Verteilung für die meisten Betrachtungen ausreichend. (de)
  • La distribución de Boltzmann o distribución de Maxwell-Boltzmann es una distribución de probabilidad de las velocidades de un gas asociada a la estadística de Maxwell-Boltzmann para dicho sistema. Técnicamente el término distribución de Boltzman se reserva para la función de probabilidad de la energía de las partículas, mientras que el término distribución de Maxwell-Boltzmann se reserva para la distribución de probabilidad de la velocidad de las partículas (obviamente existe una relación matemática fija entre ambas). (es)
  • En théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition des molécules entre les différentes vitesses dans un gaz à l'équilibre thermodynamique global à la température uniforme, cette répartition étant exponentielle. (fr)
  • La distribuzione di Maxwell-Boltzmann è una funzione di distribuzione delle particelle con una certa energia, in un sistema che obbedisce alle leggi della fisica classica: fornisce cioè la probabilità che una particella abbia un'energia compresa fra ed , oppure una velocità compresa fra e . Le ipotesi fondamentali alla base di questa distribuzione sono che le particelle componenti il sistema siano distinguibili, che il sistema sia lineare, isotropo e che i processi statistici alla base dello stato del sistema obbediscano alla statistica di Markov. In termini fisici, si dice allora che il sistema è perfettamente termalizzato. Questo avviene per esempio se la frequenza di collisioni all'interno del sistema (che per esempio può essere un gas) è abbastanza elevata rispetto ai tempi dei processi che si vogliono analizzare. Quando la prima ipotesi cade, per esempio nella meccanica quantistica, la distribuzione di Maxwell-Boltzmann non è più valida, e compaiono invece due tipi di distribuzioni diverse, note come distribuzione di Fermi-Dirac e di Bose-Einstein. Quando le ipotesi sulla linearità, isotropia o sulla statistica Markoviana cadono, la distribuzione di Maxwell-Boltzmann viene variamente modificata, a seconda delle proprietà del sistema. In questo secondo caso, non esiste una trattazione organica completa, ma ci sono varie teorie che permettono di trattare alcuni casi particolari. Qui di seguito verrà esposto il caso dei sistemi debolmente caotici, cioè di quei sistemi che nella teoria del caos non sono ergodici, ma sono caratterizzati da regioni ordinate immerse in regioni più caotiche. (it)
  • マクスウェル分布(マクスウェルぶんぷ、英: Maxwell distribution)とは、熱力学的平衡状態において、気体分子の速度が従う分布関数である。マクスウェル=ボルツマン分布(英: Maxwell-Boltzmann distribution)と呼ばれることもある。気体分子運動論により導かれたが、より一般化されたボルツマン分布からも導かれる。 (ja)
  • De Maxwell-Boltzmann-verdeling of snelheidsverdelingswet van Maxwell-Boltzmann geeft de verdeling van de snelheden van gasmoleculen in een ideaal gas weer, wanneer de moleculen als puntvormig kunnen worden opgevat en zij volkomen elastisch botsen, zodat impuls en energie behouden blijven. Er vinden tevens geen simultane botsingen plaats van 3 of meer moleculen. De Maxwell-Boltzmann-verdeling vervult een centrale rol in toepassingen van de kinetische gastheorie. De dichtheid f(v) van de snelheidsverdeling van de deeltjes wordt gegeven door: . Daarin is * m de massa van een deeltje van het gas in kg * k de Boltzmannconstante (1,38 × 10−23 J K-1) * v de snelheid van een deeltje in m s−1 * T de temperatuur van het gas in K De verdeling is genoemd naar James Clerk Maxwell, die haar als eerste in 1866 afleidde, en Ludwig Boltzmann, die het bewijs verscherpt heeft. De verdeling is een bijzonder geval van de algemene Boltzmann-verdeling. (nl)
  • Распределение Ма́ксвелла — распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию. Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии. Распределение Максвелла может и должно быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе. Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физике ионосферы и космической плазмы, где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов. Распределение энергии Максвелла может быть выражено как дискретное распределение энергии: , где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и — постоянная Больцмана. (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма. (ru)
  • A distribuição de Maxwell-Boltzmann é uma distribuição de probabilidade com aplicações em física e química. No início da segunda metade do século XIX (1859) J. C. Maxwell divulgou estudos sobre como se distribuíam os módulos das velocidades das moléculas de um gás em equilíbrio térmico. Posteriormente, esses estudos foram solidificados por L. Boltzmann. A distribuição de velocidades moleculares de um gás pode ser medida diretamente com aparato adequado. Os valores medidos de rapidez são plotados para dois valores de temperatura. A quantidade é chamada função de distribuição de velocidades de Maxwell-Boltzmann. Em um gás com N moléculas, o número de moléculas com rapidez entre e é , dado por: A função de distribuição de velocidades de Maxwell-Boltzmann pode ser deduzida usando-se a mecânica estatística; a temperatura é a variável que determina a mudança para uma certa substância e k é a constante de Boltzmann (definida pela razão entre a constante dos gases perfeitos e a constante de Avogadro que resulta em ). O resultado da função é: Assim, a velocidade média das moléculas a uma certa temperatura é dada por , a velocidade mais provável de ser encontrada é dada por e a velocidade quadrática média é dada por . Dessa forma, é possível esboçar um gráfico semelhante ao da imagem ao lado, no qual fica mais fácil de visualizar a distribuição. A distribuição de velocidades de Maxwell-Boltzmann também pode ser escrita como uma distribuição de energias cinéticas de translação. (pt)
  • 麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·麦克斯韦和路德维希·玻尔兹曼命名。 这个分布可以视为一个三维向量的大小,它的分量是独立和正态分布的,其期望值为0,标准差为 。如果 的分布为 ,那么 就呈麦克斯韦-玻尔兹曼分布,其参数为 。 (zh)
  • Rozkład Maxwella – wzór określający rozkład prędkości cząstek gazu doskonałego, w którym poruszają się one swobodnie i nie oddziałują ze sobą, z wyjątkiem bardzo krótkich zderzeń sprężystych, w których mogą wymieniać pęd i energię kinetyczną, ale nie zmieniają swoich stanów wewnątrzcząsteczkowych. Cząstka w tym kontekście oznacza zarówno atomy jak i cząsteczki. Rozkład ten ma postać gdzie: * – prędkość cząsteczki, * – masa cząsteczki (m = M/NA, gdzie M – masa molowa gazu, NA – stała Avogadra), * – stała Boltzmanna (k = R/NA, gdzie R – stała gazowa), * – temperatura bezwzględna, * – gęstość prawdopodobieństwa wystąpienia cząsteczki o prędkości v. Z funkcji podanej przez Jamesa Clerka Maxwella wynika, że większość cząsteczek będzie poruszać się z prędkością zbliżoną do pewnej wartości średniej. Ze względu na występujące we wzorze wyrażenie wykładnicze z proporcjonalnym do , udział cząsteczek o bardzo dużych prędkościach jest bardzo mały, gdyż jest bardzo małe, gdy jest duże. Z drugiej strony, ze względu na to, że czynnik dąży do zera, gdy maleje, udział cząsteczek o bardzo małych prędkościach jest także znikomy. (pl)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 19830 (xsd:integer)
dbo:wikiPageRevisionID
  • 742522139 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) توزيع ماكسويل-بولتزمان هو توزيع احتمالي يستخدم في تطبيقات عديدة في الفيزياء والكيمياء ، وفي الديناميكا الإحصائية .حيث تعتمد درجة حرارة نظام فيزيائي كبير على حركة مكوناته من الذرات أو الجزيئات و تتميز الجزيئات بسرعات مختلفة . وتختلف سرعة الجزيء من وقت لآخر بسبب اصطدامه بالجزيئات الأخرى. ويكون عدد الجزيئات التي تكون لها سرعة معينة ثابتاً عند وصول النظام إلى حالة الاتزان الحراري . ويمكننا تعيين فئة من تلك الجزيئات ذات السرعة الواحدة بحساب توزيع ماكسويل للسرعات عند درجة حرارة معلومة للنظام. ويـُعرف هذا التوزيع بتوزيع ماكسويل و بولتزمان . (ar)
  • La distribución de Boltzmann o distribución de Maxwell-Boltzmann es una distribución de probabilidad de las velocidades de un gas asociada a la estadística de Maxwell-Boltzmann para dicho sistema. Técnicamente el término distribución de Boltzman se reserva para la función de probabilidad de la energía de las partículas, mientras que el término distribución de Maxwell-Boltzmann se reserva para la distribución de probabilidad de la velocidad de las partículas (obviamente existe una relación matemática fija entre ambas). (es)
  • En théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition des molécules entre les différentes vitesses dans un gaz à l'équilibre thermodynamique global à la température uniforme, cette répartition étant exponentielle. (fr)
  • マクスウェル分布(マクスウェルぶんぷ、英: Maxwell distribution)とは、熱力学的平衡状態において、気体分子の速度が従う分布関数である。マクスウェル=ボルツマン分布(英: Maxwell-Boltzmann distribution)と呼ばれることもある。気体分子運動論により導かれたが、より一般化されたボルツマン分布からも導かれる。 (ja)
  • 麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·麦克斯韦和路德维希·玻尔兹曼命名。 这个分布可以视为一个三维向量的大小,它的分量是独立和正态分布的,其期望值为0,标准差为 。如果 的分布为 ,那么 就呈麦克斯韦-玻尔兹曼分布,其参数为 。 (zh)
  • In statistics the Maxwell–Boltzmann distribution is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used in physics (in particular in statistical mechanics) for describing particle speeds in idealized gases where the particles move freely inside a stationary container without interacting with one another, except for very brief collisions in which they exchange energy and momentum with each other or with their thermal environment. Particle in this context refers to gaseous particles (atoms or molecules), and the system of particles is assumed to have reached thermodynamic equilibrium.While the distribution was first derived by Maxwell in 1860 on heuristic grounds, Boltzmann later carried out significant investigations into (en)
  • Die Maxwell-Boltzmann-Verteilung oder auch maxwellsche Geschwindigkeitsverteilung ist eine Wahrscheinlichkeitsdichte der statistischen Physik und spielt in der Thermodynamik, speziell der kinetischen Gastheorie, eine wichtige Rolle. Sie beschreibt die statistische Verteilung des Betrags der Teilchengeschwindigkeiten in einem idealen Gas. Benannt wird sie nach James Clerk Maxwell und Ludwig Boltzmann, die sie 1860 erstmals hergeleitet haben. Sie ergibt sich aus der Boltzmann-Statistik. (de)
  • La distribuzione di Maxwell-Boltzmann è una funzione di distribuzione delle particelle con una certa energia, in un sistema che obbedisce alle leggi della fisica classica: fornisce cioè la probabilità che una particella abbia un'energia compresa fra ed , oppure una velocità compresa fra e . Quando la prima ipotesi cade, per esempio nella meccanica quantistica, la distribuzione di Maxwell-Boltzmann non è più valida, e compaiono invece due tipi di distribuzioni diverse, note come distribuzione di Fermi-Dirac e di Bose-Einstein. (it)
  • De Maxwell-Boltzmann-verdeling of snelheidsverdelingswet van Maxwell-Boltzmann geeft de verdeling van de snelheden van gasmoleculen in een ideaal gas weer, wanneer de moleculen als puntvormig kunnen worden opgevat en zij volkomen elastisch botsen, zodat impuls en energie behouden blijven. Er vinden tevens geen simultane botsingen plaats van 3 of meer moleculen. De Maxwell-Boltzmann-verdeling vervult een centrale rol in toepassingen van de kinetische gastheorie. De dichtheid f(v) van de snelheidsverdeling van de deeltjes wordt gegeven door: . Daarin is (nl)
  • A distribuição de Maxwell-Boltzmann é uma distribuição de probabilidade com aplicações em física e química. No início da segunda metade do século XIX (1859) J. C. Maxwell divulgou estudos sobre como se distribuíam os módulos das velocidades das moléculas de um gás em equilíbrio térmico. Posteriormente, esses estudos foram solidificados por L. Boltzmann. A distribuição de velocidades moleculares de um gás pode ser medida diretamente com aparato adequado. Os valores medidos de rapidez são plotados para dois valores de temperatura. A quantidade e é , dado por: ). O resultado da função é: (pt)
  • Rozkład Maxwella – wzór określający rozkład prędkości cząstek gazu doskonałego, w którym poruszają się one swobodnie i nie oddziałują ze sobą, z wyjątkiem bardzo krótkich zderzeń sprężystych, w których mogą wymieniać pęd i energię kinetyczną, ale nie zmieniają swoich stanów wewnątrzcząsteczkowych. Cząstka w tym kontekście oznacza zarówno atomy jak i cząsteczki. Rozkład ten ma postać gdzie: * – prędkość cząsteczki, * – masa cząsteczki (m = M/NA, gdzie M – masa molowa gazu, NA – stała Avogadra), * – stała Boltzmanna (k = R/NA, gdzie R – stała gazowa), * – temperatura bezwzględna, * z (pl)
  • Распределение Ма́ксвелла — распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию. Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии. (ru)
rdfs:label
  • Maxwell–Boltzmann distribution (en)
  • توزيع ماكسويل-بولتزمان (ar)
  • Maxwell-Boltzmann-Verteilung (de)
  • Distribución de Boltzmann (es)
  • Loi de distribution des vitesses de Maxwell (fr)
  • Distribuzione di Maxwell-Boltzmann (it)
  • マクスウェル分布 (ja)
  • Maxwell-Boltzmann-verdeling (nl)
  • Rozkład Maxwella (pl)
  • Distribuição de Maxwell-Boltzmann (pt)
  • Распределение Максвелла (ru)
  • 麦克斯韦-玻尔兹曼分布 (zh)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is owl:differentFrom of
is owl:sameAs of
is foaf:primaryTopic of