In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameter values that maximize the likelihood of making the observations given the parameters. MLE can be seen as a special case of the maximum a posteriori estimation (MAP) that assumes a uniform prior distribution of the parameters, or as a variant of the MAP that ignores the prior and which therefore is unregularized.

Property Value
dbo:abstract
  • In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameter values that maximize the likelihood of making the observations given the parameters. MLE can be seen as a special case of the maximum a posteriori estimation (MAP) that assumes a uniform prior distribution of the parameters, or as a variant of the MAP that ignores the prior and which therefore is unregularized. The method of maximum likelihood corresponds to many well-known estimation methods in statistics. For example, one may be interested in the heights of adult female penguins, but be unable to measure the height of every single penguin in a population due to cost or time constraints. Assuming that the heights are normally distributed with some unknown mean and variance, the mean and variance can be estimated with MLE while only knowing the heights of some sample of the overall population. MLE would accomplish this by taking the mean and variance as parameters and finding particular parametric values that make the observed results the most probable given the model. In general, for a fixed set of data and underlying statistical model, the method of maximum likelihood selects the set of values of the model parameters that maximizes the likelihood function. Intuitively, this maximizes the "agreement" of the selected model with the observed data, and for discrete random variables it indeed maximizes the probability of the observed data under the resulting distribution. Maximum likelihood estimation gives a unified approach to estimation, which is well-defined in the case of the normal distribution and many other problems. (en)
  • Die Maximum-Likelihood-Methode, kurz ML-Methode, (von engl. maximale Wahrscheinlichkeit) bezeichnet in der Statistik ein parametrisches Schätzverfahren. Dabei wird – vereinfacht ausgedrückt – derjenige Parameter als Schätzung ausgewählt, gemäß dessen Verteilung die Realisierung der beobachteten Daten am plausibelsten erscheint. Im Falle einer von einem Parameter abhängigen Wahrscheinlichkeitsfunktion wird zu einem beobachteten Ausgang also die folgende Likelihoodfunktion für verschiedene Parameter betrachtet: Dabei bezeichnet den Raum aller Ergebnisse und den Raum aller möglichen Parameterwerte. Für einen bestimmten Wert des Parameters entspricht die Likelihood-Funktion (Wahrscheinlichkeitsfunktion) der Wahrscheinlichkeit, das Ergebnis zu beobachten. Als Maximum-Likelihood-Schätzung wird entsprechend dasjenige bezeichnet, für das die Likelihood-Funktion maximal wird. Im Falle stetiger Verteilungen gilt eine analoge Definition, nur wird die Wahrscheinlichkeitsfunktion in dieser Situation durch die zugehörige Wahrscheinlichkeitsdichte ersetzt. Allgemein lassen sich Maximum-Likelihood-Methoden für beliebige statistische Modelle definieren, solange die entsprechende Verteilungsklasse eine dominierte Verteilungsklasse ist. (de)
  • في الإحصاء، تقدير الاحتمال الأرجح أو الإمكانية القصوى هو طريقة لتقدير مُعامِل النموذج الإحصائي وإيجاده لمجموعة من البيانات، وذلك بتقدير أوسطة لهذا النموذج. عند تطبيقها على مجموعة من البيانات وإعطاء نموذج إحصائي، يقدم تقدير الاحتمال الأرجح تقديرات لنموذج المُعاملات. تتوافق طريقة الاحتمال الأرجح مع العديد من طرق التقدير المعروفة في الإحصائيات فعلى سبيل المثال، يمكن للمرء أن يهتم بارتفاع أنثى زرافة بالغة، ولكن غير قادر على قياس ارتفاع كل زرافة في السكان بسبب قيود التكلفة أو الوقت. بافتراض أن الارتفاعات هيموزَّع توزيع (غاوسي) العادي مع بعض المتوسط والتباين، غير المعروف، يمكن تقدير المتوسط والتباين من خلال تقدير الاحتمال الأرجح (MLE) فقط من خلال معرفة ارتفاع بعض العينات من المجموع الكلي للسكان. يقوم تقدير الاحتمال الأرجح بإنجاز هذا عن طريق أخذ المتوسط والتباين كمُعاملات وإيجاد قيم معاملة محددة التي تجعل النتائج الملحوظة الأكثر احتمالاً (نظرًا للنموذج). بشكلٍ عام، لمجموعة محددة من البيانات والنموذج الإحصائي الأساسي، تختار طريقة الاحتمال الأرجح قِيَم نموذج المعاملات الذي يُنتج توزيعًا يعطي البيانات المرصودة أكبر احتمال؛ أي المعاملات التي تزيد وظيفة الاحتمال). يعطي تقدير الاحتمال الأرجح مقاربة موحدة إلى التقدير، وهي محددة جيدًا في حالة التوزيع الطبيعي والعديد من المشكلات الأخرى. ومع ذلك، في بعض المشكلات المعقدة، تحدث الصعوبات: في مثل تلك المشكلات، فمُقدرات الاحتمال الأرجح غير مناسبة أو غير موجودة. (ar)
  • L'estimation du maximum de vraisemblance est une méthode statistique courante utilisée pour inférer les paramètres de la distribution de probabilité d'un échantillon donné. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. (fr)
  • Il metodo della massima verosimiglianza, in statistica, è un procedimento matematico per determinare uno stimatore. Caso particolare della più ampia classe di metodi di stima basata sugli stimatori d'estremo, il metodo consiste nel massimizzare la funzione di verosimiglianza, definita in base alla probabilità di osservare una data realizzazione campionaria, condizionatamente ai valori assunti dai parametri statistici oggetto di stima. Il metodo è stato sviluppato, originariamente, dal genetista e statistico sir Ronald Fisher, tra il 1912 e il 1922. (it)
  • En estadística, la estimación por máxima verosimilitud (conocida también como EMV y, en ocasiones, MLE por sus siglas en inglés) es un método habitual para ajustar un modelo y encontrar sus parámetros. (es)
  • De meest aannemelijke schatter, ook maximum-likelihood-schatter genoemd, is in de statistiek een schattingsmethode die als schatting van een parameter die waarde kiest, waarvoor de aannemelijkheidsfunctie maximaal is. Deze schatting heet daarom de meest aannemelijke schatting. Het is de parameterwaarde die gezien de steekproefuitkomst het meest aannemelijk is. Hoe aannemelijk een parameterwaarde is, wordt afgemeten aan de kans (of kansdichtheid) om bij die waarde van de parameter de steekproefuitkomst te vinden. Een voorbeeld zal dit verduidelijken. (nl)
  • 最尤推定(さいゆうすいてい、英: maximum likelihood estimation、略してMLEともいう)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 生物学に於いて、塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。 (ja)
  • Em estatística, a estimativa por máxima verossimilhança (maximum-likelihood estimation- MLE) é um método para estimar os parâmetros de um modelo estatístico. Assim, a partir de um conjunto de dados e dado um modelo estatístico, a estimativa por máxima verossimilhança estima valores para os diferentes parâmetros do modelo. Por exemplo, alguém pode estar interessado na altura de girafas fêmeas adultas, mas devido à restrições de custo ou tempo, medir a altura de todas essas girafas de uma população pode ser impossível. Podemos assumir que as alturas são normalmente distribuídas (modelo estatístico), mas desconhecemos a média e variância (parâmetros do modelo) dessa distribuição. Esses parâmetros da distribuição podem então ser estimados por MLE a partir da medição de uma amostra da população. O método busca aqueles valores para os parâmetros de maneira a maximizar a probabilidade dos dados amostrados, dados o modelo assumido (no caso, distribuição normal). De maneira geral, posto um conjunto de dados e um modelo estatístico, o método de máxima verossimilhança estima os valores dos diferentes parâmetros do modelo estatístico de maneira a maximizar a probabilidade dos dados observados (isto é, busca parâmetros que maximizem a função de verossimilhança). O método de máxima verossimilhança apresenta-se como um método geral para estimação de parâmetros, principalmente no caso de distribuições normais. (pt)
  • Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами (хотя ранее он был использован Гауссом, Лапласом и другими). Оценка максимального правдоподобия является популярным статистическим методом, который используется для создания статистической модели на основе данных, и обеспечения оценки параметров модели. Метод максимального правдоподобия соответствует многим известным методам оценки в области статистики. Например, вы интересуетесь таким антропометрическим параметром, как рост жителей России. Предположим, у вас имеются данные о росте некоторого количества людей, а не всего населения. Кроме того предполагается, что рост является нормально распределённой величиной с неизвестной дисперсией и средним значением. Среднее значение и дисперсия роста в выборке являются максимально правдоподобными к среднему значению и дисперсии всего населения. Для фиксированного набора данных и базовой вероятностной модели, используя метод максимального правдоподобия, мы получим значения параметров модели, которые делают данные «более близкими» к реальным. Оценка максимального правдоподобия даёт уникальный и простой способ определить решения в случае нормального распределения. Метод оценки максимального правдоподобия применяется для широкого круга статистических моделей, в том числе: * линейные модели и обобщённые линейные модели; * факторный анализ; * моделирование структурных уравнений; * многие ситуации, в рамках проверки гипотезы и доверительного интервала формирования; * дискретные модели выбора. (ru)
  • 在统计学中,最大似然估计,也称为最大概似估计,是用来估计一个概率模型的参数的一种方法。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 140806 (xsd:integer)
dbo:wikiPageRevisionID
  • 744025556 (xsd:integer)
dbp:id
  • p/m063100
dbp:title
  • Maximum-likelihood method
dct:subject
rdfs:comment
  • L'estimation du maximum de vraisemblance est une méthode statistique courante utilisée pour inférer les paramètres de la distribution de probabilité d'un échantillon donné. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. (fr)
  • Il metodo della massima verosimiglianza, in statistica, è un procedimento matematico per determinare uno stimatore. Caso particolare della più ampia classe di metodi di stima basata sugli stimatori d'estremo, il metodo consiste nel massimizzare la funzione di verosimiglianza, definita in base alla probabilità di osservare una data realizzazione campionaria, condizionatamente ai valori assunti dai parametri statistici oggetto di stima. Il metodo è stato sviluppato, originariamente, dal genetista e statistico sir Ronald Fisher, tra il 1912 e il 1922. (it)
  • En estadística, la estimación por máxima verosimilitud (conocida también como EMV y, en ocasiones, MLE por sus siglas en inglés) es un método habitual para ajustar un modelo y encontrar sus parámetros. (es)
  • De meest aannemelijke schatter, ook maximum-likelihood-schatter genoemd, is in de statistiek een schattingsmethode die als schatting van een parameter die waarde kiest, waarvoor de aannemelijkheidsfunctie maximaal is. Deze schatting heet daarom de meest aannemelijke schatting. Het is de parameterwaarde die gezien de steekproefuitkomst het meest aannemelijk is. Hoe aannemelijk een parameterwaarde is, wordt afgemeten aan de kans (of kansdichtheid) om bij die waarde van de parameter de steekproefuitkomst te vinden. Een voorbeeld zal dit verduidelijken. (nl)
  • 最尤推定(さいゆうすいてい、英: maximum likelihood estimation、略してMLEともいう)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 生物学に於いて、塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。 (ja)
  • 在统计学中,最大似然估计,也称为最大概似估计,是用来估计一个概率模型的参数的一种方法。 (zh)
  • In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameter values that maximize the likelihood of making the observations given the parameters. MLE can be seen as a special case of the maximum a posteriori estimation (MAP) that assumes a uniform prior distribution of the parameters, or as a variant of the MAP that ignores the prior and which therefore is unregularized. (en)
  • في الإحصاء، تقدير الاحتمال الأرجح أو الإمكانية القصوى هو طريقة لتقدير مُعامِل النموذج الإحصائي وإيجاده لمجموعة من البيانات، وذلك بتقدير أوسطة لهذا النموذج. عند تطبيقها على مجموعة من البيانات وإعطاء نموذج إحصائي، يقدم تقدير الاحتمال الأرجح تقديرات لنموذج المُعاملات. (ar)
  • Die Maximum-Likelihood-Methode, kurz ML-Methode, (von engl. maximale Wahrscheinlichkeit) bezeichnet in der Statistik ein parametrisches Schätzverfahren. Dabei wird – vereinfacht ausgedrückt – derjenige Parameter als Schätzung ausgewählt, gemäß dessen Verteilung die Realisierung der beobachteten Daten am plausibelsten erscheint. Im Falle einer von einem Parameter abhängigen Wahrscheinlichkeitsfunktion wird zu einem beobachteten Ausgang also die folgende Likelihoodfunktion für verschiedene Parameter betrachtet: Dabei bezeichnet den Raum aller Ergebnisse und den Raum aller möglichen Parameterwerte. (de)
  • Em estatística, a estimativa por máxima verossimilhança (maximum-likelihood estimation- MLE) é um método para estimar os parâmetros de um modelo estatístico. Assim, a partir de um conjunto de dados e dado um modelo estatístico, a estimativa por máxima verossimilhança estima valores para os diferentes parâmetros do modelo. (pt)
  • Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами (хотя ранее он был использован Гауссом, Лапласом и другими). (ru)
rdfs:label
  • Maximum likelihood estimation (en)
  • تقدير الاحتمال (ar)
  • Maximum-Likelihood-Methode (de)
  • Máxima verosimilitud (es)
  • Maximum de vraisemblance (fr)
  • Metodo della massima verosimiglianza (it)
  • 最尤推定 (ja)
  • Meest aannemelijke schatter (nl)
  • Máxima verossimilhança (pt)
  • Метод максимального правдоподобия (ru)
  • 最大似然估计 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of