In mathematics, a matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. For example, the dimensions of matrix () are 2 × 3 (read "two by three"), because there are two rows and three columns.

Property Value
dbo:abstract
  • في الرياضيات، المصفوفة (بالإنجليزية: Matrix) هي مجموعة مستطيلة من الأعداد أو من الرموز أو من التعبيرات منتظمة بشكل أعمدة وصفوف. يُدعى كل عنصر من هذا المجموعة بعنصرٍ أو مدخلٍ للمصفوفة. فيما يلي، على سبيل المثال، مصفوفة تحتوي على صفين وعلى ثلاثة أعمدة : مثالا على المدخلات في المصفوفة أعلاه 1, 9, 13, 20, 55 ,4. يدل عادة على أي مدخل في مصفوفة ما باسم المصفوفة بحرف لاتيني صغير وأسفله رقمين صغيرين بحيث يمثل العدد الأول رقم الصف والثاني رقم العمود مثل الشكل المرفق.ويعرف عدد الأسطر في عدد الأعمدة برتبة المصفوفة أو قياس المصفوفة.مثال ذلك المصفوفة المحتوية على 4 أسطر و 3 أعمدة قياسها هو 4*3 ويمكن اجراء عمليتي الجمع والطرح على المصفوفات المتساوية القياس. كما يمكن ضرب المصفوفات بأنسجام معين في القياس. ولهذه العمليات العديد من خصائص الحساب العادي, باستثناء أن ضرب المصفوفات ليس بعملية تبديلية, وبشكل عام يمكن أن نقول أن A.B لا يساوي B.A. تعرف المصفوف المؤلفة من صف واحد أو عمود واحد بمتجه. أما المصفوفة ذات القياس الأكبر تعرف بموتر. تعتبر المصفوفات من إحدى أهم مفاتيح الجبر الخطي. فيمكن أن تستخدم المصفوفات في حل النقل الخطي. يتوافق ضرب المصفوفات مع النقل الخطي الدالة المركبة. كما يمكن للمصفوفات تتبع المعاملات في نظام المعادلات الخطية يمكن تعريف المصفوفة عامة على أنها دالة رياضية خطية تحول مجموعة بداية أي انطلاق (مجال) إلى مجموعة وصول أو نهاية (مدى). مجموعة الانطلاق والوصول يمكن أن تكون متكونة من أعداد صحيحة أو عقدية أو أشعة من الأعداد كما يمكن أن تكون هاتان المجموعتان متكونة بدورها من دالات رياضية أو أشعة دالات رياضية. ويمكن أن نرمز للمصفوفة بمعقفين يكتب بينهما عناصر المصفوفة كما هو مبين أسفله: حيث يمكن أن تكون أعدادا صحيحة أو مركبة كما يمكن أن تكون دالات رياضية. (ar)
  • In der Mathematik versteht man unter einer Matrix (Plural Matrizen) eine rechteckige Anordnung (Tabelle) von Elementen meist mathematischer Objekte, etwa Zahlen. Mit diesen Objekten lässt sich dann in bestimmter Weise rechnen, indem man Matrizen addiert oder miteinander multipliziert. Matrizen können beliebige Dimensionalität besitzen. Matrizen sind ein Schlüsselkonzept der linearen Algebra und tauchen in fast allen Gebieten der Mathematik auf. Sie stellen Zusammenhänge, in denen Linearkombinationen eine Rolle spielen, übersichtlich dar und erleichtern damit Rechen- und Gedankenvorgänge. Sie werden insbesondere dazu benutzt, lineare Abbildungen darzustellen und lineare Gleichungssysteme zu beschreiben und zu lösen. Die Bezeichnung Matrix wurde 1850 von James Joseph Sylvester eingeführt. Eine Anordnung, wie in nebenstehender Abbildung, von Elementen erfolgt in Zeilen und Spalten. (de)
  • En mathématiques, les matrices sont des tableaux de nombres qui servent à interpréter en termes calculatoires et donc opérationnels les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss. (fr)
  • En matemática, una matriz es un arreglo bidimensional de números. Dado que puede definirse tanto la suma como el producto de matrices, en mayor generalidad se dice que son elementos de un anillo. Una matriz se representa por medio de una letra mayúscula(A,B..) y sus elementos con la misma letra en minúscula (a,b...), con un doble subíndice donde el primero indica la fila y el segundo la columna a la que pertenece. Las matrices se utilizan para múltiples aplicaciones y sirven, en particular, para representar los coeficientes de los sistemas de ecuaciones lineales o para representar transformaciones lineales dada una base. En este último caso, las matrices desempeñan el mismo papel que los datos de un vector para las aplicaciones lineales. Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal. (es)
  • In matematica, in particolare in algebra lineare, una matrice è una tabella ordinata di elementi. Ad esempio: Le matrici sono ampiamente usate in matematica e in tutte le scienze per la loro capacità di rappresentare in maniera utile e concisa diversi oggetti matematici, come valori che dipendono da due parametri o anche sistemi lineari, cosa, quest'ultima, che le rende uno strumento centrale dell'analisi matematica. (it)
  • 数学の線型代数学周辺分野における行列(ぎょうれつ、英: matrix)は、数や記号や式などを行(ぎょう、英: row)と列(れつ、英: column)に沿って矩形状に配列したものである。行とは数の横の並びを表わし、列は数の縦の並びを表わす。並べられた個々のものはその行列の要素(ようそ、英: element)または成分(せいぶん、英: entry, component)と呼ぶ。行の数が m 個で列の数が n 個の行列は m 行 n 列の行列と呼ばれ、しばしば m × n 行列と表記される。 行の数と列の数が同じ行列はとが成分ごとの計算によって与えられる。行列のの計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は f (x) = 4x のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、R が回転行列で v が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 Rv は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。行列微分学は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。 (ja)
  • In de lineaire algebra, een deelgebied van de wiskunde, is een matrix (meervoud: matrices) een rechthoekig getallenschema. De gebruikelijke voorstelling van zo'n rechthoekig schema is met een zijde in de schrijfrichting en de andere loodrecht daarop, zodat de getallen geordend zijn in rijen en kolommen. De matrix is een middel om samenhangende gegevens en hun bewerkingen op een systematische en overzichtelijke wijze weer te geven. De term matrix werd in 1848 ingevoerd door de Britse wiskundige J. J. Sylvester. Indien er rijen en kolommen zijn, spreekt men van een m×n-matrix. Het gebruik is dus (voor sommigen anders dan verwacht) dat het eerste cijfer de hoogte aangeeft en het tweede de breedte. Als is het een vierkante matrix. De getallen heten de elementen van de matrix. Een m×n-matrix heeft dus elementen. Het element op het kruispunt van de r-de rij en de k-de kolom wordt aangeduid als het rk-de element en genoteerd als Ark. Voor de matrix zelf noteert men wel: (Ark). Ook andere notaties worden gebruikt, onder andere, waarin het rk-de element van een matrix geschreven wordt als ark. Het volgende voorbeeld toont een 2×3-matrix met gehele getallen als elementen: We zien bijvoorbeeld dat A12 = −1 en A23 = 5. Matrices zijn belangrijke instrumenten in de lineaire algebra. Men gebruikt ze onder andere voor de weergave van lineaire afbeeldingen. Matrixvermenigvuldiging komt overeen met samenstelling van lineaire afbeeldingen. Matrices kunnen ook worden gebruikt om een overzicht te bieden van de coëfficiënten in een stelsel van lineaire vergelijkingen. Voor een vierkante matrix reguleren de determinant en inverse matrix (als deze bestaat) het gedrag van oplossingen voor het corresponderende stelsel van lineaire vergelijkingen, en eigenwaarden en eigenvectoren geven inzicht in de meetkunde van de geassocieerde lineaire transformatie Matrices kennen vele toepassingen. In de natuurkunde maakt men op verscheidene gebieden gebruik van matrices, zoals bij de meetkundige optica en de matrixmechanica. De laatste toepassing heeft geleid tot een meer gedetailleerde studie van matrices met een oneindig aantal rijen en kolommen. De grafentheorie maakt gebruik van matrices om afstanden tussen paren knopen (vertices) in een graaf bij te houden. Computergraphics gebruikt matrices om de driedimensionale ruimte op een tweedimensionaal vlak te projecteren. De matrixcalculus veralgemeent klassieke analytische begrippen zoals afgeleiden van functies en exponentiële functies naar matrices, wat toepassing vindt bij het oplossen van gewone differentiaalvergelijkingen. Het serialisme en de dodecafonie zijn 20e-eeuwse muzikale stromingen die gebruikmaken van een vierkante matrix om het patroon van de intervallen te bepalen. Een belangrijke tak van de numerieke analyse is gewijd aan de ontwikkeling van efficiënte algoritmen voor matrixberekeningen, een onderwerp dat, hoewel al eeuwen oud, nog steeds een actief gebied van wiskundig onderzoek is. Matrix-decompositiemethoden vereenvoudigen zowel theoretische als praktische berekeningen. Voor ijle matrices, dat wil zeggen matrices die naar verhouding veel nullen bevatten, kunnen specifiek ontworpen algoritmen tot versnelde berekeningen leiden; dergelijke matrices spelen bijvoorbeeld een rol in de eindige-elementenmethode. (nl)
  • Em matemática, uma matriz é uma tabela de linhas e colunas de símbolos sobre um conjunto, normalmente um corpo, F, representada sob a forma de um quadro. As matrizes são muito utilizadas para a resolução de sistemas de equações lineares e transformações lineares. Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em linhas e colunas. Cada um dos itens de uma matriz é chamado de elemento. Matrizes de mesmo tamanho podem ser somadas ou subtraídas — soma-se ou subtrai-se cada elemento individualmente. Contudo, a regra que se aplica à multiplicação matricial é diferente: multiplicam-se duas matrizes somente quando o número de colunas da primeira é igual ao número de linhas da segunda. (pt)
  • Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задает размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими. Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами. Для матрицы определены следующие алгебраические операции: * сложение матриц, имеющих один и тот же размер; * умножение матриц подходящего размера (матрицу, имеющую столбцов, можно умножить справа на матрицу, имеющую строк); * в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы); * умножение матрицы на элемент основного кольца или поля (то есть скаляр). Относительно сложения матрицы образуют абелеву группу; если же рассматривать ещё и умножение на скаляр, то матрицы образуют модуль над соответствующим кольцом (векторное пространство над полем). Множество квадратных матриц замкнуто относительно матричного умножения, поэтому квадратные матрицы одного размера образуют ассоциативное кольцо с единицей относительно матричного сложения и матричного умножения. Доказано, что каждому линейному оператору, действующему в n-мерном линейном пространстве, можно сопоставить единственную квадратную матрицу порядка n; и обратно — каждой квадратной матрице порядка n может быть сопоставлен единственный линейный оператор, действующий в этом пространстве. Свойства матрицы соответствуют свойствам линейного оператора. В частности, собственные числа матрицы — это собственные числа оператора, отвечающие соответствующим собственным векторам. То же можно сказать о представлении матрицами билинейных (квадратичных) форм. В математике рассматривается множество различных типов и видов матриц. Таковы, например, единичная, симметричная, кососимметричная, верхнетреугольная (нижнетреугольная) и т. п. матрицы. Особое значение в теории матриц занимают всевозможные нормальные формы, то есть канонический вид, к которому можно привести матрицу заменой координат. Наиболее важной (в теоретическом значении) и проработанной является теория жордановых нормальных форм. На практике, однако, используются такие нормальные формы, которые обладают дополнительными свойствами, например, устойчивостью. (ru)
  • Macierz – układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic. Macierze wprowadza się często jako sposób skondensowanego zapisu układów równań liniowych, co ma na celu wyeliminowanie powtarzających się elementów standardowej notacji układów równań tego rodzaju z wieloma niewiadomymi. Same układy pojawiają się wprost podczas algebraizacji zagadnień geometrycznych (równania liniowe parametryzujące punkty, proste, płaszczyzny itd.). Wyrosłym na tym gruncie, podstawowym przeznaczeniem macierzy jest jednak sformułowanie spójnego, a zarazem zwartego sposobu zapisu pojęć i twierdzeń algebry liniowej, a więc przede wszystkim opisu przekształceń liniowych między dwoma przestrzeniami liniowymi nad wspólnym ciałem (skończeniewymiarowych, z ustalonymi bazami), czy form dwuliniowych na przestrzeni liniowej (skończonego wymiaru z wybraną bazą). Nieomalże wszystkie inne zastosowania wynikają z tych interpretacji − macierz Jacobiego, macierz Hessego, czy gradient obecne w analizie wielowymiarowej to macierze pochodnych (przedstawiane w ustalonych bazach, zwykle standardowych); podobnie ma się rzecz z wieloma możliwościami rozkładu macierzy na iloczyn macierzy o ustalonych własnościach − odpowiadają one złożeniom odpowiednich przekształceń. Macierze bada się również niezależnie od jakichkolwiek zastosowań (rozwijając w ten sposób dostępny aparat pojęciowy); samodzielny dział matematyki im poświęcony nazywa się teorią macierzy. Ponieważ macierze można traktować jak („długie”) wektory (najczęściej nad pewnym ciałem, takim jak np. liczby rzeczywiste, czy liczby zespolone), to w wielu wypadkach możliwe jest wprowadzenie przeróżnych struktur algebraicznych, czy topologicznych na różnego rodzaju przestrzeniach macierzy, co wynika stąd, iż zbiór macierzy ustalonego typu tworzy skończeniewymiarową przestrzeń liniową z działaniami na macierzach (traktowanych jak wektory, tzn. wprowadzonymi „po wskaźnikach”) − każda z tych przestrzeni ma identyczną strukturę z przestrzenią współrzędnych nad tym ciałem. Dla macierzy nad ciałami liczb rzeczywistych, czy zespolonych można przykładowo wprowadzić strukturę przestrzeni euklidesowej z jej naturalnymi strukturami, a nawet pójść krok dalej: wprowadzić strukturę algebry Liego, co w dalszym stopniu zwiększa liczbę zastosowań teorii macierzy. W ogólności struktura algebraiczna w zbiorze współczynników umożliwiająca wprowadzenie działań algebraicznych na macierzach może być pierścieniem przemiennym, a nawet półpierścieniem; w teorii reprezentacji wykorzystuje się możliwość zanurzenia grup w przestrzeniach liniowych, a więc użycia teorii macierzy w teorii grup. Dzięki temu macierze znalazły zastosowanie również w kryptografii, rachunku prawdopodobieństwa, czy elektronice − część z nich omówiono w . Interpretacje geometryczne wykorzystywane są również w grafice komputerowej do reprezentowania przekształceń świata przedstawionego w trzech wymiarach i odwzorowywania go na dwuwymiarowym ekranie. Źródłem tych zastosowań jest możliwość zwartego przedstawienia układów równań liniowych reprezentujących wirtualne obiekty, jak i sposoby ich przekształcania oraz łatwość odczytu ich własności, rozwiązań itp. W artykule zakłada się, że wszystkie macierze mają współczynniki z ustalonego ciała o ile nie zaznaczono inaczej. (pl)
  • 數學上,一個m×n的矩陣是一个由m行n列元素排列成的矩形阵列。矩陣里的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2行3列的矩阵: 。 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的列数等于第二个矩阵的行数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的線性函數的推广。设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为列数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。 矩陣是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,請參考矩陣理論。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 (zh)
  • In mathematics, a matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. For example, the dimensions of matrix () are 2 × 3 (read "two by three"), because there are two rows and three columns. The individual items in a matrix are called its elements or entries. Provided that they are the same size (have the same number of rows and the same number of columns), two matrices can be added or subtracted element by element. The rule for matrix multiplication, however, is that two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second. Any matrix can be multiplied element-wise by a scalar from its associated field. A major application of matrices is to represent linear transformations, that is, generalizations of linear functions such as f(x) = 4x. For example, the rotation of vectors in three dimensional space is a linear transformation which can be represented by a rotation matrix R: if v is a column vector (a matrix with only one column) describing the position of a point in space, the product Rv is a column vector describing the position of that point after a rotation. The product of two transformation matrices is a matrix that represents the composition of two linear transformations. Another application of matrices is in the solution of systems of linear equations. If the matrix is , it is possible to deduce some of its properties by computing its determinant. For example, a square matrix has an inverse if and only if its determinant is not zero. Insight into the geometry of a linear transformation is obtainable (along with other information) from the matrix's eigenvalues and eigenvectors. Applications of matrices are found in most scientific fields. In every branch of physics, including classical mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, they are used to study physical phenomena, such as the motion of rigid bodies. In computer graphics, they are used to project a 3D model onto a 2 dimensional screen. In probability theory and statistics, stochastic matrices are used to describe sets of probabilities; for instance, they are used within the PageRank algorithm that ranks the pages in a Google search. Matrix calculus generalizes classical analytical notions such as derivatives and exponentials to higher dimensions. A major branch of numerical analysis is devoted to the development of efficient algorithms for matrix computations, a subject that is centuries old and is today an expanding area of research. Matrix decomposition methods simplify computations, both theoretically and practically. Algorithms that are tailored to particular matrix structures, such as sparse matrices and near-diagonal matrices, expedite computations in finite element method and other computations. Infinite matrices occur in planetary theory and in atomic theory. A simple example of an infinite matrix is the matrix representing the derivative operator, which acts on the Taylor series of a function. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 20556859 (xsd:integer)
dbo:wikiPageRevisionID
  • 744854356 (xsd:integer)
dbp:align
  • right
dbp:id
  • p/m062780
dbp:title
  • Matrix
dbp:video
  • How to organize, add and multiply matrices - Bill Shillito, TED ED
dbp:width
  • 210 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • En mathématiques, les matrices sont des tableaux de nombres qui servent à interpréter en termes calculatoires et donc opérationnels les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss. (fr)
  • In matematica, in particolare in algebra lineare, una matrice è una tabella ordinata di elementi. Ad esempio: Le matrici sono ampiamente usate in matematica e in tutte le scienze per la loro capacità di rappresentare in maniera utile e concisa diversi oggetti matematici, come valori che dipendono da due parametri o anche sistemi lineari, cosa, quest'ultima, che le rende uno strumento centrale dell'analisi matematica. (it)
  • 數學上,一個m×n的矩陣是一个由m行n列元素排列成的矩形阵列。矩陣里的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2行3列的矩阵: 。 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的列数等于第二个矩阵的行数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的線性函數的推广。设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为列数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。 矩陣是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,請參考矩陣理論。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 (zh)
  • في الرياضيات، المصفوفة (بالإنجليزية: Matrix) هي مجموعة مستطيلة من الأعداد أو من الرموز أو من التعبيرات منتظمة بشكل أعمدة وصفوف. يُدعى كل عنصر من هذا المجموعة بعنصرٍ أو مدخلٍ للمصفوفة. فيما يلي، على سبيل المثال، مصفوفة تحتوي على صفين وعلى ثلاثة أعمدة : تعتبر المصفوفات من إحدى أهم مفاتيح الجبر الخطي. فيمكن أن تستخدم المصفوفات في حل النقل الخطي. يتوافق ضرب المصفوفات مع النقل الخطي الدالة المركبة. كما يمكن للمصفوفات تتبع المعاملات في نظام المعادلات الخطية حيث يمكن أن تكون أعدادا صحيحة أو مركبة كما يمكن أن تكون دالات رياضية. (ar)
  • In der Mathematik versteht man unter einer Matrix (Plural Matrizen) eine rechteckige Anordnung (Tabelle) von Elementen meist mathematischer Objekte, etwa Zahlen. Mit diesen Objekten lässt sich dann in bestimmter Weise rechnen, indem man Matrizen addiert oder miteinander multipliziert. Matrizen können beliebige Dimensionalität besitzen. Die Bezeichnung Matrix wurde 1850 von James Joseph Sylvester eingeführt. Eine Anordnung, wie in nebenstehender Abbildung, von Elementen erfolgt in Zeilen und Spalten. (de)
  • En matemática, una matriz es un arreglo bidimensional de números. Dado que puede definirse tanto la suma como el producto de matrices, en mayor generalidad se dice que son elementos de un anillo. Una matriz se representa por medio de una letra mayúscula(A,B..) y sus elementos con la misma letra en minúscula (a,b...), con un doble subíndice donde el primero indica la fila y el segundo la columna a la que pertenece. Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal. (es)
  • 数学の線型代数学周辺分野における行列(ぎょうれつ、英: matrix)は、数や記号や式などを行(ぎょう、英: row)と列(れつ、英: column)に沿って矩形状に配列したものである。行とは数の横の並びを表わし、列は数の縦の並びを表わす。並べられた個々のものはその行列の要素(ようそ、英: element)または成分(せいぶん、英: entry, component)と呼ぶ。行の数が m 個で列の数が n 個の行列は m 行 n 列の行列と呼ばれ、しばしば m × n 行列と表記される。 行の数と列の数が同じ行列はとが成分ごとの計算によって与えられる。行列のの計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。 (ja)
  • In de lineaire algebra, een deelgebied van de wiskunde, is een matrix (meervoud: matrices) een rechthoekig getallenschema. De gebruikelijke voorstelling van zo'n rechthoekig schema is met een zijde in de schrijfrichting en de andere loodrecht daarop, zodat de getallen geordend zijn in rijen en kolommen. De matrix is een middel om samenhangende gegevens en hun bewerkingen op een systematische en overzichtelijke wijze weer te geven. De term matrix werd in 1848 ingevoerd door de Britse wiskundige J. J. Sylvester. Indien er rijen en heeft dus met gehele getallen als elementen: (nl)
  • Em matemática, uma matriz é uma tabela de linhas e colunas de símbolos sobre um conjunto, normalmente um corpo, F, representada sob a forma de um quadro. As matrizes são muito utilizadas para a resolução de sistemas de equações lineares e transformações lineares. Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em linhas e colunas. Cada um dos itens de uma matriz é chamado de elemento. (pt)
  • Macierz – układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic. W artykule zakłada się, że wszystkie macierze mają współczynniki z ustalonego ciała o ile nie zaznaczono inaczej. (pl)
  • In mathematics, a matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. For example, the dimensions of matrix () are 2 × 3 (read "two by three"), because there are two rows and three columns. (en)
  • Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задает размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими. Для матрицы определены следующие алгебраические операции: (ru)
rdfs:label
  • مصفوفة (رياضيات) (ar)
  • Matrix (Mathematik) (de)
  • Matriz (matemáticas) (es)
  • Matrice (mathématiques) (fr)
  • Matrice (it)
  • 行列 (ja)
  • Matrix (wiskunde) (nl)
  • Macierz (pl)
  • Matriz (matemática) (pt)
  • Матрица (математика) (ru)
  • 矩阵 (zh)
  • Matrix (mathematics) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of