In mathematics, a proof is a deductive argument for a mathematical statement. In the argument, other previously established statements, such as theorems, can be used. In principle, a proof can be traced back to self-evident or assumed statements, known as axioms, along with accepted rules of inference. Axioms may be treated as conditions that must be met before the statement applies. Proofs are examples of deductive reasoning and are distinguished from inductive or empirical arguments; a proof must demonstrate that a statement is always true (occasionally by listing all possible cases and showing that it holds in each), rather than enumerate many confirmatory cases. An unproved proposition that is believed to be true is known as a conjecture.

Property Value
dbo:abstract
  • In mathematics, a proof is a deductive argument for a mathematical statement. In the argument, other previously established statements, such as theorems, can be used. In principle, a proof can be traced back to self-evident or assumed statements, known as axioms, along with accepted rules of inference. Axioms may be treated as conditions that must be met before the statement applies. Proofs are examples of deductive reasoning and are distinguished from inductive or empirical arguments; a proof must demonstrate that a statement is always true (occasionally by listing all possible cases and showing that it holds in each), rather than enumerate many confirmatory cases. An unproved proposition that is believed to be true is known as a conjecture. Proofs employ logic but usually include some amount of natural language which usually admits some ambiguity. In fact, the vast majority of proofs in written mathematics can be considered as applications of rigorous informal logic. Purely formal proofs, written in symbolic language instead of natural language, are considered in proof theory. The distinction between formal and informal proofs has led to much examination of current and historical mathematical practice, quasi-empiricism in mathematics, and so-called folk mathematics (in both senses of that term). The philosophy of mathematics is concerned with the role of language and logic in proofs, and mathematics as a language. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) في الرياضيات، البرهان عبارة عن إثبات، يستند على بديهيات axiom معينة، لعبارة رياضية أو علاقة رياضية بأنها صحيحية منطقيا حكما في ظل هذه المجموعة من البدهيات. البرهان الرياضي إذا عبارة عن حجة argument أو تعليل منطقي، ليس تجريبيا. ضمن هذا التعريف فإن مقولة أو عبارة رياضية يجب أن تبرهن على صحتها في جميع الظروف والحالات قبل أن يتم اعتبارها مبرهنة theorem رياضية. أما المقولة غير المبرهنة التي تلقى نوعا من الدعم التجريبي فتعرف بالحدسية conjecture. افتراضيا في جميع فروع الرياضيات، تكون البدهيات المفترضة هي بدهيات ZFC أي Zermelo–Fraenkel set theory (و هي نظرية مجموعات زيرميلو-فرينكل مع بدهيات الاختيار) ما لم يشار إلى بدهيات مختلفة. نظرية مجموعة زيرميلو-فرينكل تقوم بمشاكلة formalize (أي تجعله شكليا formal) الحدس الرياضي حول نظرية المجموعات، وفي نفس الوقت تقوم نظرية المجموعات بوصف الجبر والتحليل الرياضي. عندما يراد إثبات قضية رياضية يستحسن، في حال الإمكان، وضعها في صيغة اقتضاء ق ¬ ك، إن ذلك يتيح صياغة عكس هذه القضية بسهولة. يسمى العنصر الأيمن (المقدم) «ق» في الاقتضاء فرضاً، ويسمى العنصر الأيسر (التالي) «ك» طلباً. وعلى سبيل المثال تكتب المبرهنة: في كل متوازي أضلاع: ينصف كل من القطرين القطر الآخر، في صيغة اقتضاء كما يأتي: إذا كان الرباعي متوازي أضلاع، فإن قطريه ينصِّف كل منهما الآخر. فالفرض هو أن الرباعي متوازي الأضلاع، والطلب هو أن ينصف كل من قطريه القطر الآخر. للبرهان الرياضي عدة طرق : البرهان المباشر، العكسي، البرهان بالتناقض، البرهان بالاختيار، البرهان بالاستقراء... الخ مثلا البرهان المباشر وتعتمد هذه الطريقة على الاقتناع بأن علاقة الاقتضاء متعدية ونعني بذلك أنه إذا كان : * أ تقتضي ب، ب تقتضي جـ فإن أ تقتضي جـ مثال: * أثبت أنه إذا كان س = 3 فإن 2(4 س + 5) – 1 = 33 البرهان س = 3 تقتضي 4 س = 12 تقتضي 4س + 5 = 17 تقتضي 2 (4س + 5) = 34 تقتضي 2 (4س + 5) – 1 = 33 مشاريع شقيقة في كومنز صور وملفات عن: برهان رياضي * 32xبوابة رياضيات * 32xبوابة فلسفة * 32xبوابة منطق (ar)
  • Ein Beweis ist in der Mathematik die als fehlerfrei anerkannte Herleitung der Richtigkeit bzw. der Unrichtigkeit einer Aussage aus einer Menge von Axiomen, die als wahr vorausgesetzt werden, und anderen Aussagen, die bereits bewiesen sind. Um den Beweis klar vom gültigen Schluss zu unterscheiden, spricht man auch vom axiomatischen Beweis. Umfangreichere Beweise von mathematischen Sätzen werden in der Regel in mehrere kleine Teilbeweise aufgeteilt, siehe dazu Satz und Hilfssatz. In der Beweistheorie, einem Teilgebiet der mathematischen Logik, werden Beweise formal als Ableitungen aufgefasst und selbst als mathematische Objekte betrachtet, um etwa die Beweisbarkeit oder Unbeweisbarkeit von Sätzen aus gegebenen Axiomen selbst zu beweisen. (de)
  • En matemáticas, una demostración o bien una prueba es un argumento deductivo para asegurar la verdad de una proposición matemática. En la argumentación se pueden usar otras afirmaciones previamente establecidas, tales como teoremas o bien las afirmaciones iniciales o axiomas . En principio una demostración se puede rastrear hasta afirmaciones generalmente aceptadas, conocidas como axiomas. Las demostraciones son ejemplos de razonamiento deductivo y se distinguen de argumentos inductivos o empíricos; una demostración debe demostrar que una afirmación es siempre verdadera (ocasionalmente al listar todos los casos posibles y mostrar que es válida en cada uno), más que enumerar muchos casos confirmatorios. Una afirmación no probada que se cree verdadera se conoce como conjetura. Las demostraciones emplean lógica pero normalmente incluyen una buena parte de lenguaje natural, el cual usualmente admite alguna ambigüedad. De hecho, la gran mayoría de las demostraciones en las matemáticas escritas puede ser considerada como aplicaciones de lógica informal rigurosa. Las demostraciones puramente formales, escritas en lenguaje simbólico en lugar de lenguaje natural, se consideran en teoría de la demostración. La distinción entre demostraciones formales e informales ha llevado a examinar la lógica matemática histórica y actual, el cuasi-empirismo matemático y el formalismo matemático. La filosofía de las matemáticas concierne al rol del lenguaje y la lógica en las demostraciones, y en las matemáticas como lenguaje. El hecho de no conocer ninguna demostración de un teorema no implica su no veracidad; sólo la demostración de la negación de este resultado implica que es falso. (es)
  • En mathématiques, une démonstration permet d'établir un énoncé mathématique à partir de propositions initiales, ou précédemment démontrées à partir de propositions initiales, en s'appuyant sur un ensemble de règles de déduction. Hors du champ des mathématiques, en droit par exemple, une démonstration intervient comme un complément de preuves, c'est une suite d'arguments énoncés en vue d'emporter l'adhésion de l'auditeur ou du lecteur. (fr)
  • Una dimostrazione matematica è un processo di deduzione che, partendo da premesse assunte come valide (ipotesi) o da proposizioni dimostrate in virtù di queste premesse, determina la necessaria validità di una nuova proposizione in virtù della (sola) coerenza formale del ragionamento. Il termine "dimostrare" deriva dal latino demonstrare, composto dalla radice de- (di valore intensivo) e da monstrare ("mostrare", "far vedere"), da cui il significato di mostrare a tutti quella che viene considerata una verità. In matematica, però, il concetto viene appunto specializzato, e una dimostrazione ha una formulazione molto precisa: per dimostrare un'affermazione (la tesi), occorre partire da una o più affermazioni considerate vere (le ipotesi), usando un insieme ben definito di derivazioni logiche formali. In pratica, la catena di passaggi formali viene spesso in larga parte sottintesa, in modo da ridurre l'estensione della dimostrazione scritta ed evitare di appesantirla con puntualizzazioni considerate evidenti e immediate; tuttavia, in linea teorica, questo processo deduttivo può sempre essere applicato nelle dimostrazioni di natura matematica. La dimostrazione matematica è generalmente deduttiva; da ipotesi generali si giunge a una tesi particolare. Esiste anche la dimostrazione induttiva; a differenza dell'uso comune del termine, che fa giungere ad una verità generale partendo da elementi particolari, la dimostrazione matematica induttiva deve essere presa come assioma, ad esempio nella formulazione di Peano. Un'altra caratterizzazione delle dimostrazioni matematiche distingue una dimostrazione diretta, nella quale viene effettivamente dimostrata la tesi, dalla dimostrazione indiretta nella quale la tesi si suppone vera e si deve giungere alla ipotesi tramite passaggi logici o per assurdo, nella quale si suppone che la tesi non sia vera e si giunge a una contraddizione. Questo secondo tipo di dimostrazione, che si appoggia al principio del terzo escluso e sul quale si basano un gran numero di teoremi matematici, non è però considerato valido dalla scuola intuizionista fondata da Brouwer. (it)
  • 証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。 (ja)
  • In de wiskunde bestaat een bewijs uit het volgens formele regels aantonen dat, gegeven bepaalde axioma's, een bepaalde bewering waar is. (nl)
  • Dowód – wykazanie, że pewne zdanie jest prawdziwe. Dowód należy odróżnić od empirycznego lub heurystycznego rozumowania. Każdy krok dowodu musi jasno wynikać z poprzednich lub być przyjętym aksjomatem; rozumowanie nie spełniające tego warunku nie jest dowodem. Ostatni krok dowodu to udowodnione zdanie, które w ten sposób staje się twierdzeniem danej teorii. Zwyczajowo koniec dowodu oznacza się skrótem q.e.d. (quod erat demonstrandum), c.n.d. (co należało dowieść), c.b.d.o. (co było do okazania) lub podobnym. (pl)
  • Em matemática, uma prova é uma demonstração de que, dados certos axiomas, algum enunciado de interesse é necessariamente verdadeiro. Utiliza como base premissas intrínsecas a um modelo conceitual e um silogismo que, a partir de uma série de operações, chega ao resultado. Costuma-se marcar o final de uma prova com a abreviação c. q. d. (como queríamos demonstrar). (pt)
  • Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при необходимости можно восстановить формальное доказательство. Необходимость формального доказательства утверждений — одна из основных характерных черт математики как дедуктивной отрасли знаний, соответственно, понятие доказательства играет центральную роль в предмете математики, а наличие доказательств и их корректность определяют статус любых математических результатов. На протяжении всей истории математики представление о способах и допустимых методах доказательства существенно менялось, в основном, в сторону большей формализации и бо́льших ограничений. Ключевой вехой в вопросе формализации доказательства стало создание математической логики в XIX веке и формализация её средствами основных техник доказательства. В XX веке построена теория доказательств — теория, изучающая доказательство как математический объект. С появлением во второй половине XX века компьютеров особое значение получило применение методов математического доказательства для проверки и синтеза программ, и даже было установлено структурное соответствие между компьютерными программами и математическими доказательствами (соответствие Карри — Ховарда), на основе которого созданы средства автоматического доказательства. Основные приёмы, используемые при построении доказательств: прямое доказательство, математическая индукция и её обобщения, доказательство от противного, контрапозиция, построение, перебор, установление биекции, двойной счёт; в приложениях в качестве математических доказательств привлекаются также методы, не дающие формального доказательства, но обеспечивающие практическую применимость результата — вероятностные, статистические, приближённые. В зависимости от раздела математики, используемого формализма или математической школы не все методы могут приниматься безоговорочно, в частности, конструктивное доказательство предполагает серьёзные ограничения. (ru)
  • 在數學上,證明是在一個特定的公理系統中,根据一定的规则或标准,由公理和定理推導出某些命題的過程。比起证据,数学证明一般依靠演绎推理,而不是依靠自然归纳和经验性的理据。這樣推導出來的命題也叫做該系統中的定理。 數學證明建立在逻辑之上,但通常會包含若干程度的自然語言,因此可能會產生一些含糊的部分。實際上,用文字形式寫成的數學證明,在大多數情況都可以視為非形式邏輯的應用。在證明論的範疇內,則考慮那些用純形式化的语言写出的證明。這個区别导致了对過往到現在的數學实践、數學上的擬經驗論和民俗数学的大部分检验。數學哲學就關注語言和邏輯在數學證明中的角色,和作為語言的數學。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 82285 (xsd:integer)
dbo:wikiPageRevisionID
  • 740755168 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • En mathématiques, une démonstration permet d'établir un énoncé mathématique à partir de propositions initiales, ou précédemment démontrées à partir de propositions initiales, en s'appuyant sur un ensemble de règles de déduction. Hors du champ des mathématiques, en droit par exemple, une démonstration intervient comme un complément de preuves, c'est une suite d'arguments énoncés en vue d'emporter l'adhésion de l'auditeur ou du lecteur. (fr)
  • 証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。 (ja)
  • In de wiskunde bestaat een bewijs uit het volgens formele regels aantonen dat, gegeven bepaalde axioma's, een bepaalde bewering waar is. (nl)
  • Dowód – wykazanie, że pewne zdanie jest prawdziwe. Dowód należy odróżnić od empirycznego lub heurystycznego rozumowania. Każdy krok dowodu musi jasno wynikać z poprzednich lub być przyjętym aksjomatem; rozumowanie nie spełniające tego warunku nie jest dowodem. Ostatni krok dowodu to udowodnione zdanie, które w ten sposób staje się twierdzeniem danej teorii. Zwyczajowo koniec dowodu oznacza się skrótem q.e.d. (quod erat demonstrandum), c.n.d. (co należało dowieść), c.b.d.o. (co było do okazania) lub podobnym. (pl)
  • Em matemática, uma prova é uma demonstração de que, dados certos axiomas, algum enunciado de interesse é necessariamente verdadeiro. Utiliza como base premissas intrínsecas a um modelo conceitual e um silogismo que, a partir de uma série de operações, chega ao resultado. Costuma-se marcar o final de uma prova com a abreviação c. q. d. (como queríamos demonstrar). (pt)
  • 在數學上,證明是在一個特定的公理系統中,根据一定的规则或标准,由公理和定理推導出某些命題的過程。比起证据,数学证明一般依靠演绎推理,而不是依靠自然归纳和经验性的理据。這樣推導出來的命題也叫做該系統中的定理。 數學證明建立在逻辑之上,但通常會包含若干程度的自然語言,因此可能會產生一些含糊的部分。實際上,用文字形式寫成的數學證明,在大多數情況都可以視為非形式邏輯的應用。在證明論的範疇內,則考慮那些用純形式化的语言写出的證明。這個区别导致了对過往到現在的數學实践、數學上的擬經驗論和民俗数学的大部分检验。數學哲學就關注語言和邏輯在數學證明中的角色,和作為語言的數學。 (zh)
  • In mathematics, a proof is a deductive argument for a mathematical statement. In the argument, other previously established statements, such as theorems, can be used. In principle, a proof can be traced back to self-evident or assumed statements, known as axioms, along with accepted rules of inference. Axioms may be treated as conditions that must be met before the statement applies. Proofs are examples of deductive reasoning and are distinguished from inductive or empirical arguments; a proof must demonstrate that a statement is always true (occasionally by listing all possible cases and showing that it holds in each), rather than enumerate many confirmatory cases. An unproved proposition that is believed to be true is known as a conjecture. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) في الرياضيات، البرهان عبارة عن إثبات، يستند على بديهيات axiom معينة، لعبارة رياضية أو علاقة رياضية بأنها صحيحية منطقيا حكما في ظل هذه المجموعة من البدهيات. البرهان الرياضي إذا عبارة عن حجة argument أو تعليل منطقي، ليس تجريبيا. ضمن هذا التعريف فإن مقولة أو عبارة رياضية يجب أن تبرهن على صحتها في جميع الظروف والحالات قبل أن يتم اعتبارها مبرهنة theorem رياضية. أما المقولة غير المبرهنة التي تلقى نوعا من الدعم التجريبي فتعرف بالحدسية conjecture. افتراضيا في جميع فروع الرياضيات، تكون البدهيات المفترضة هي بدهيات ZFC أي Zermelo–Fraenkel set theory (و هي نظرية مجموعات زيرميلو-فرينكل مع بدهيات الاختيار) ما لم يشار إلى بدهيات مختلفة. نظرية مجموعة زيرميلو-فرينكل تقوم بمشاكل (ar)
  • Ein Beweis ist in der Mathematik die als fehlerfrei anerkannte Herleitung der Richtigkeit bzw. der Unrichtigkeit einer Aussage aus einer Menge von Axiomen, die als wahr vorausgesetzt werden, und anderen Aussagen, die bereits bewiesen sind. Um den Beweis klar vom gültigen Schluss zu unterscheiden, spricht man auch vom axiomatischen Beweis. Umfangreichere Beweise von mathematischen Sätzen werden in der Regel in mehrere kleine Teilbeweise aufgeteilt, siehe dazu Satz und Hilfssatz. (de)
  • En matemáticas, una demostración o bien una prueba es un argumento deductivo para asegurar la verdad de una proposición matemática. En la argumentación se pueden usar otras afirmaciones previamente establecidas, tales como teoremas o bien las afirmaciones iniciales o axiomas . En principio una demostración se puede rastrear hasta afirmaciones generalmente aceptadas, conocidas como axiomas. Las demostraciones son ejemplos de razonamiento deductivo y se distinguen de argumentos inductivos o empíricos; una demostración debe demostrar que una afirmación es siempre verdadera (ocasionalmente al listar todos los casos posibles y mostrar que es válida en cada uno), más que enumerar muchos casos confirmatorios. Una afirmación no probada que se cree verdadera se conoce como conjetura. (es)
  • Una dimostrazione matematica è un processo di deduzione che, partendo da premesse assunte come valide (ipotesi) o da proposizioni dimostrate in virtù di queste premesse, determina la necessaria validità di una nuova proposizione in virtù della (sola) coerenza formale del ragionamento. (it)
  • Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при необходимости можно восстановить формальное доказательство. Необходимость формального доказательства утверждений — одна из основных характерных черт математики как дедуктивной отрасли знаний, соответственно, понятие доказательства играет центральную роль в предмете математики, а наличие доказательств и (ru)
rdfs:label
  • Mathematical proof (en)
  • برهان رياضي (ar)
  • Beweis (Mathematik) (de)
  • Demostración en matemática (es)
  • Démonstration (fr)
  • Dimostrazione matematica (it)
  • 証明 (ja)
  • Wiskundig bewijs (nl)
  • Dowód (matematyka) (pl)
  • Prova matemática (pt)
  • Математическое доказательство (ru)
  • 證明 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of