Mathematical analysis is the branch of mathematics dealing with limitsand related theories, such as differentiation, integration, measure, infinite series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis.Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space).

Property Value
dbo:abstract
  • Mathematical analysis is the branch of mathematics dealing with limitsand related theories, such as differentiation, integration, measure, infinite series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis.Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). (en)
  • التحليل الرياضي هو فرع الرياضيات الذي يهتم بدراسة الدوال الرياضية وتحولاتها باستخدام أدوات ترتبط بمفاهيم النهاية، حيث تدرس خواص مثل الاتصال والاشتقاق والتكامل والتفاضل، التقعر والانعطاف في منحنيات التوابع والدوال، وغالباً ما تدرس هذه المفاهيم على أعداد حقيقية أو أعداد عقدية والدوال المعرفة عليها ومن الممكن أن تدرس أيضاً على فضاءات أخرى كالفضاء المتري أو الطبولوجي. (ar)
  • Die Analysis [aˈnalyzɪs] (griechisch ανάλυσις análysis, deutsch ‚Auflösung‘, altgriechisch ἀναλύειν analýein ‚auflösen‘) ist ein Teilgebiet der Mathematik, dessen Grundlagen von Gottfried Wilhelm Leibniz und Isaac Newton als Infinitesimalrechnung unabhängig voneinander entwickelt wurden. Als eigenständiges Teilgebiet der Mathematik neben den klassischen Teilgebieten der Geometrie und der Algebra existiert die Analysis seit Leonhard Euler. Grundlegend für die gesamte Analysis sind die beiden Körper (der Körper der reellen Zahlen) und (der Körper der komplexen Zahlen) mitsamt deren geometrischen, arithmetischen, algebraischen und topologischen Eigenschaften. Zentrale Begriffe der Analysis sind die des Grenzwerts, der Folge, der Reihe sowie in besonderem Maße der Begriff der Funktion. Die Untersuchung von reellen und komplexen Funktionen hinsichtlich Stetigkeit, Differenzierbarkeit und Integrierbarkeit zählt zu den Hauptgegenständen der Analysis. Die hierzu entwickelten Methoden sind in allen Natur- und Ingenieurwissenschaften von großer Bedeutung. (de)
  • El análisis matemático es una rama de las matemáticas que estudia los números reales, los complejos, tanto del punto de vista algebraico como topológico, así como las funciones entre esos conjuntos y construcciones derivadas. Se empieza a desarrollar a partir del inicio de la formulación rigurosa de límite y estudia conceptos como la continuidad, la integración y la derivación de diversos tipos.. Una de las diferencias entre el álgebra y el análisis es que en este segundo recurre a construcciones que involucran sucesiones de un número infinito de elementos, mientras que álgebra usualmente es finitista. (es)
  • L'analyse (du grec άναλύειν, analuein) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes. Cependant, elles peuvent aussi être définies et étudiées dans le contexte plus général des espaces métriques ou topologiques. (fr)
  • L'analisi matematica è il ramo della matematica che si occupa delle proprietà che emergono dalla scomposizione infinita di un oggetto denso. Si fonda sul calcolo infinitesimale, con il quale, attraverso le nozioni di limite e continuità, studia il comportamento locale di una funzione utilizzando gli strumenti del calcolo differenziale e del calcolo integrale. Introducendo per il calcolo concetti problematici, quali quello di infinito e di limite, si può passare all'indagine che le ha permesso di divenire basilare in diverse discipline scientifiche e tecniche (dalle scienze naturali all'ingegneria, dall'informatica all'economia), dove viene spesso coniugata con l'analisi numerica. (it)
  • 解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。 (ja)
  • Analyse is een tak van de wiskunde, ontwikkeld uit de rekenkunde en de meetkunde. De analyse houdt zich bezig met het bestuderen van functies van reële en complexe getallen.Het gaat hierbij met name om de mate van verandering binnen functies, zoals hellingen en krommingen. De uitvinding van de analyse wordt toegeschreven aan Leibniz en Newton, die geweldig ruzie hebben gemaakt over wie de eerste was. Ook Barrow, Descartes, De Fermat en Huygens hebben eraan gewerkt. Het middelpunt van de analyse vormen de afgeleiden, integralen en limieten. Een van de belangrijkste redenen om analyse te ontwikkelen was om het raaklijnprobleem op te lossen. Een andere term voor "Analyse" is "differentiaal- en integraalrekening". Soms wordt ook de Engelse term "calculus" gebruikt. Strikt genomen is deze laatste term onjuist; het is een verkorting van differential and integral calculus, terwijl het woord calculus ook voor sommige andere wiskundegebieden wordt gebruikt, zoals vector calculus, variational calculus, e.a. (nl)
  • Analiza matematyczna – zespół teorii obejmujący wiele ważnych działów matematyki. Początkowo analiza matematyczna obejmowała jedynie to, co dzisiaj nazywamy rachunkiem różniczkowym i całkowym. Jej rozwój zainicjowały prace Leibniza i Newtona z początku XVII wieku. Z czasem rachunek różniczkowy i całkowy, ograniczający się wcześniej do kartezjańskich przestrzeni rzeczywistych, objął swoim zakresem inne przestrzenie: przestrzenie zespolone (teoria funkcji holomorficznych), przestrzenie Banacha i Hilberta (wraz z odpowiadającymi im teoriami) oraz bardziej zaawansowane twory geometryczne (na przykład rozmaitości różniczkowalne). Zaawansowanej analizy matematycznej nie można obecnie uprawiać bez znajomości algebry, topologii (w tym topologii algebraicznej) czy geometrii różniczkowej. (pl)
  • Análise é o ramo da matemática que lida com os conceitos introduzidos pelo cálculo diferencial e integral, medidas, limites, séries infinitas e funções analíticas. Surgiu da necessidade de prover formulações rigorosas às ideias intuitivas do cálculo, sendo hoje uma disciplina muito mais ampla cujos tópicos são tratados em uma subdivisão chamada análise real. Se a Análise surgiu do estudo dos números e funções reais, sua abrangência cresceu de forma a estudar os números complexos, bem como espaços mais gerais, tais como os espaços métricos, espaços normados e os espaços lineares topológicos (ELT). Embora seja difícil definir exatamente o que seja análise matemática e delinear precisamente seu objeto de estudo, pode-se dizer grosseiramente que a análise se dedica ao estudo das propriedades topológicas em estruturas algébricas. (pt)
  • 数学分析(英语:mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。 (zh)
  • Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ — раздел на стыке математической логики и анализа, применяющий методы теории моделей для альтернативной формализации, прежде всего, классических разделов. Считается одним из трёх основных направлений математики, наряду с алгеброй и геометрией. Основной отличительный признак анализа в сравнении с другими направлениями — наличие функций переменных величин как предмета исследования. При этом, если элементарные разделы анализа в учебных программах и материалах часто объединяют с элементарной алгеброй (например, существуют многочисленные учебники и курсы с наименованием «Алгебра и начала анализа»), то современный анализ в значительной степени использует методы современных геометрических разделов, прежде всего, дифференциальной геометрии и топологии. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 48396 (xsd:integer)
dbo:wikiPageRevisionID
  • 738770642 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • Mathematical analysis is the branch of mathematics dealing with limitsand related theories, such as differentiation, integration, measure, infinite series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis.Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). (en)
  • التحليل الرياضي هو فرع الرياضيات الذي يهتم بدراسة الدوال الرياضية وتحولاتها باستخدام أدوات ترتبط بمفاهيم النهاية، حيث تدرس خواص مثل الاتصال والاشتقاق والتكامل والتفاضل، التقعر والانعطاف في منحنيات التوابع والدوال، وغالباً ما تدرس هذه المفاهيم على أعداد حقيقية أو أعداد عقدية والدوال المعرفة عليها ومن الممكن أن تدرس أيضاً على فضاءات أخرى كالفضاء المتري أو الطبولوجي. (ar)
  • L'analyse (du grec άναλύειν, analuein) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes. Cependant, elles peuvent aussi être définies et étudiées dans le contexte plus général des espaces métriques ou topologiques. (fr)
  • 数学分析(英语:mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。 (zh)
  • Die Analysis [aˈnalyzɪs] (griechisch ανάλυσις análysis, deutsch ‚Auflösung‘, altgriechisch ἀναλύειν analýein ‚auflösen‘) ist ein Teilgebiet der Mathematik, dessen Grundlagen von Gottfried Wilhelm Leibniz und Isaac Newton als Infinitesimalrechnung unabhängig voneinander entwickelt wurden. Als eigenständiges Teilgebiet der Mathematik neben den klassischen Teilgebieten der Geometrie und der Algebra existiert die Analysis seit Leonhard Euler. Grundlegend für die gesamte Analysis sind die beiden Körper (der Körper der reellen Zahlen) und (de)
  • El análisis matemático es una rama de las matemáticas que estudia los números reales, los complejos, tanto del punto de vista algebraico como topológico, así como las funciones entre esos conjuntos y construcciones derivadas. Se empieza a desarrollar a partir del inicio de la formulación rigurosa de límite y estudia conceptos como la continuidad, la integración y la derivación de diversos tipos.. (es)
  • 解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 (ja)
  • Analyse is een tak van de wiskunde, ontwikkeld uit de rekenkunde en de meetkunde. De analyse houdt zich bezig met het bestuderen van functies van reële en complexe getallen.Het gaat hierbij met name om de mate van verandering binnen functies, zoals hellingen en krommingen. De uitvinding van de analyse wordt toegeschreven aan Leibniz en Newton, die geweldig ruzie hebben gemaakt over wie de eerste was. Ook Barrow, Descartes, De Fermat en Huygens hebben eraan gewerkt. Het middelpunt van de analyse vormen de afgeleiden, integralen en limieten. Een van de belangrijkste redenen om analyse te ontwikkelen was om het raaklijnprobleem op te lossen. (nl)
  • L'analisi matematica è il ramo della matematica che si occupa delle proprietà che emergono dalla scomposizione infinita di un oggetto denso. Si fonda sul calcolo infinitesimale, con il quale, attraverso le nozioni di limite e continuità, studia il comportamento locale di una funzione utilizzando gli strumenti del calcolo differenziale e del calcolo integrale. (it)
  • Analiza matematyczna – zespół teorii obejmujący wiele ważnych działów matematyki. Początkowo analiza matematyczna obejmowała jedynie to, co dzisiaj nazywamy rachunkiem różniczkowym i całkowym. Jej rozwój zainicjowały prace Leibniza i Newtona z początku XVII wieku. Zaawansowanej analizy matematycznej nie można obecnie uprawiać bez znajomości algebry, topologii (w tym topologii algebraicznej) czy geometrii różniczkowej. (pl)
  • Análise é o ramo da matemática que lida com os conceitos introduzidos pelo cálculo diferencial e integral, medidas, limites, séries infinitas e funções analíticas. Surgiu da necessidade de prover formulações rigorosas às ideias intuitivas do cálculo, sendo hoje uma disciplina muito mais ampla cujos tópicos são tratados em uma subdivisão chamada análise real. Embora seja difícil definir exatamente o que seja análise matemática e delinear precisamente seu objeto de estudo, pode-se dizer grosseiramente que a análise se dedica ao estudo das propriedades topológicas em estruturas algébricas. (pt)
  • Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ — раздел на стыке математической логики и анализа, применяющий методы теории моделей для альтернативной формализации, прежде всего, классических разделов. (ru)
rdfs:label
  • Mathematical analysis (en)
  • تحليل رياضي (ar)
  • Analysis (de)
  • Análisis matemático (es)
  • Analyse (mathématiques) (fr)
  • Analisi matematica (it)
  • 解析学 (ja)
  • Analyse (wiskunde) (nl)
  • Analiza matematyczna (pl)
  • Análise matemática (pt)
  • 数学分析 (zh)
  • Анализ (раздел математики) (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:field of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of