A magnetic field is the magnetic effect of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field. The term is used for two distinct but closely related fields denoted by the symbols B and H, where H is measured in units of amperes per meter (symbol: A·m−1 or A/m) in the SI. B is measured in teslas (symbol:T; note that although the symbol is capital T, "tesla" is written in lower case in the SI system) and newtons per meter per ampere (symbol: N·m−1·A−1 or N/(m·A)) in the SI. B is most commonly defined in terms of the Lorentz force it exerts on moving electric charges.

Property Value
dbo:abstract
  • A magnetic field is the magnetic effect of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field. The term is used for two distinct but closely related fields denoted by the symbols B and H, where H is measured in units of amperes per meter (symbol: A·m−1 or A/m) in the SI. B is measured in teslas (symbol:T; note that although the symbol is capital T, "tesla" is written in lower case in the SI system) and newtons per meter per ampere (symbol: N·m−1·A−1 or N/(m·A)) in the SI. B is most commonly defined in terms of the Lorentz force it exerts on moving electric charges. Magnetic fields can be produced by moving electric charges and the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. In special relativity, electric and magnetic fields are two interrelated aspects of a single object, called the electromagnetic tensor; the split of this tensor into electric and magnetic fields depends on the relative velocity of the observer and charge. In quantum physics, the electromagnetic field is quantized and electromagnetic interactions result from the exchange of photons. In everyday life, magnetic fields are most often encountered as a force created by permanent magnets, which pull on ferromagnetic materials such as iron, cobalt, or nickel, and attract or repel other magnets. Magnetic fields are widely used throughout modern technology, particularly in electrical engineering and electromechanics. The Earth produces its own magnetic field, which is important in navigation, and it shields the Earth's atmosphere from solar wind. Rotating magnetic fields are used in both electric motors and generators. Magnetic forces give information about the charge carriers in a material through the Hall effect. The interaction of magnetic fields in electric devices such as transformers is studied in the discipline of magnetic circuits. (en)
  • المجال المغناطيسي أو الحقل المغناطيسي ويسمى أحياناً بالحث المغناطيسي (بالإنكليزية: Magnetic Field) وهي قوة مغناطيسية تنشأ في الحيز المحيط بالجسم المغناطيسي أو الموصل الذي يمر به تيار كهربائي، أو بتعبير أبسط يمكن وصفها بأنها المنطقة المحيطة بالمغناطيس ويظهر فيها أثره (على مواد معينة). إذا وضعت إبرة بوصلة في المجال المغناطيسي ذو قوة ما فإنها توجه نفسها في اتجاه معين في كل جزء من المجال والخطوط المرسومة في اتجاه الإبرة عند النقط المختلفة تحدد الوضع العام للخطوط التي هي عليها القوة المغناطيسية في المجال. يمكن مشاهدة توزيع المجال المغناطيسي بنثر برادة الحديد على ورقة موضوعة على قضيب مغناطيسي أو ورقة يمر خلالها سلك يمر به تيار كهربائي. التيارات الخارجية تتجه من الشمال إلى الجنوب والتيارات الداخلية تتجه من الجنوب إلى الشمال.ويمكن إنشاء حقل مغناطيسي بتمرير تيار كهربائي بسلك ما حيث تتشكل دوائر مغناطيسية حول السلك ومركزها السلك نفسه. حيث أن التيار الكهربائي يولّد مجالاً مغناطيسياً والعكس صحيح. نستطيع معرفة اتجاهه باستخدام قاعدة اليد اليمنى حيث يشير الإبهام إلى جهة التيار وبقية الأصابع تشير باتجاه الحقل المغناطيسي. ويمكن تكبير مجال الحقل المغناطيسي بواسطة تكبير الذبذبات الخارجة من المادة عن طريق إمرار تيار كهربائي من الشمال إلى الجنوب. كل الجسيمات المشحونة المتحركة تُنتج حقلاً مغناطيسياً. وتنتج بعض الجسيمات، مثل الإلكترونات، حقولاً مغناطيسية معقدة لكن معروفة جيداً، حيث تعتمد على شحنة وسرعة وتسارع الجسيمات. تتشكل الخطوط المغناطيسية في "دوائر متحدة المركز" حول موصل اسطواني لحامل التيّار، مثل قطعة من سلك. ويُمكن تحديد اتجاه حقل مغناطيسي كهذا باستخدام "قاعدة قبضة اليد اليمنى". وتتناقص قوة المجال المغناطيسي في تناسب عكسي مع مربع المسافة بينه وبين الموصل.انحناء السلك الحامل للتيّار إلى حلقة يركّز المجال المغناطيسي داخلها في حين يُضعفه خارجها. وانحناء سلك إلى عدة حلقات متقاربة - أو متباعدة - لتشكل ملفاً يعزز ويزيد هذا التأثير. وسلك حول مركز حديدي يُمكن أن يخلق مغناطيساً كهربائياً، يولّد بدوره مجالاً مغناطيسياً قوياً وقابلاً للتحكم بسهولة. يملك مغناطيس كهربائي لا نهائي الطول مجالاً مغناطيسياً منتظماً داخله، ولا يملك واحداً خارجه. أما المغناطيس الكهربائي محدود الطول فيولّد جوهرياً نفس المجال المغناطيس لـ"مغناطيس دائم" منتظم من نفس الحجم والشكل، وتعتمد قوّته وقطبيه على التيار المتدفق من خلال الملف. (ar)
  • Un campo magnético es una descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos. El campo magnético en cualquier punto está especificado por dos valores, la dirección y la magnitud; de tal forma que es un campo vectorial. Específicamente, el campo magnético es un vector axial, como lo son los momentos mecánicos y los campos rotacionales. El campo magnético es más comúnmente definido en términos de la fuerza de Lorentz ejercida en cargas eléctricas. Campo magnético puede referirse a dos separados pero muy relacionados símbolos B y H. Los campos magnéticos son producidos por cualquier carga eléctrica en movimiento y el momento magnético intrínseco de las partículas elementales asociadas con una propiedad cuántica fundamental, su espín. En la relatividad especial, campos eléctricos y magnéticos son dos aspectos interrelacionados de un objeto, llamado el tensor electromagnético. Las fuerzas magnéticas dan información sobre la carga que lleva un material a través del efecto Hall. La interacción de los campos magnéticos en dispositivos eléctricos tales como transformadores es estudiada en la disciplina de circuitos magnéticos. (es)
  • En physique, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace, permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents. Deux champs vectoriels apparentés portent le nom de champ magnétique, et sont notés B (qui s'exprime en tesla) et H (qui s'exprime en ampère par mètre). Si les normes internationales de terminologie prescrivent de réserver normalement l’appellation de « champ magnétique » ou d'« intensité de champ magnétique » au seul champ vectoriel H, il est fréquent en physique fondamentale d'utiliser le terme champ magnétique pour le champ vectoriel B, ce qui sera le cas dans le présent article, le champ H étant en pratique plutôt utilisé dans l'étude de l'électromagnétisme des milieux continus. Les différentes sources de champ magnétique sont les aimants permanents, le courant électrique (c'est-à-dire le déplacement d'ensemble de charges électriques), ainsi que la variation temporelle d'un champ électrique (induction magnétique). La présence du champ magnétique se traduit par l'existence d'une force agissant sur les charges électriques en mouvement (dite force de Lorentz) et par divers effets affectant certains matériaux (paramagnétisme, diamagnétisme ou ferromagnétisme selon les cas). La grandeur qui détermine l'interaction entre un matériau et un champ magnétique est la susceptibilité magnétique. (fr)
  • In fisica, in particolare nel magnetismo, il campo magnetico è un campo vettoriale solenoidale generato nello spazio dal moto di una carica elettrica o da un campo elettrico variabile nel tempo. Insieme al campo elettrico esso costituisce il campo elettromagnetico, responsabile dell'interazione elettromagnetica in particolare il campo magnetico e i fenomeni legati ad esso sono sempre spiegabili come manifestazioni relativistiche del solo campo elettrico. (it)
  • 磁場(じば、英語: Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。この項では一般的な磁場の性質、及び‘ H ’を扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。 (ja)
  • In de fysica en de elektriciteitsleer is een magnetisch veld een veld dat de ruimte doordringt en dat een magnetische kracht op bewegende elektrische ladingen en magnetische dipolen uitoefent. Magnetische velden omgeven elektrische stromen, magnetische dipolen, en veranderende elektrische velden. De grootte en richting worden uitgedrukt in een vector, de magnetische veldsterkte . Een verwante grootheid is de magnetische fluxdichtheid (ook magnetische inductie genoemd). (nl)
  • Pole magnetyczne – stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia, w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego albo obu. (pl)
  • Campos magnéticos cercam materiais em correntes elétricas e são detectados pela força que exercem sobre materiais magnéticos ou cargas elétricas em movimento. O campo magnético em qualquer lugar possui tanto uma direção quanto uma magnitude (ou força), por tanto é um campo vetorial. Para a física dos materiais magnéticos, veja magnetismo e magneto, mais especificamente ferromagnetismo, paramagnetismo e diamagnetismo. Para campos magnéticos constantes, como os gerados por materiais magnéticos e correntes contínuas, veja magnetoestática. Um campo magnético variável gera um campo elétrico e um campo elétrico variável resulta em um campo magnético (veja eletromagnetismo). À luz da relatividade especial, os campos elétrico e magnético são dois aspectos inter-relacionados de um mesmo objeto, chamado de campo eletromagnético. Um campo elétrico puro em um sistema de referência é observado como uma combinação de um campo elétrico e um campo magnético em um sistema de referência em movimento em relação ao primeiro. Na física moderna, o campo magnético e o campo elétrico são entendidos como sendo um campo fotônico. Na linguagem do Modelo Padrão a força magnética é mediada por fótons. Frequentemente esta descrição microscópica não é necessária por que a teoria clássica, mais simples e coberta neste artigo, é suficiente. A diferença é desprezível na maioria das circunstâncias. (pt)
  • Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля. Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты). Кроме этого, оно возникает в результате изменения во времени электрического поля. Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля). С математической точки зрения — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина). Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал. * Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряжённости магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают; однако в магнитной среде вектор не несет уже того же физического смысла, являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно Магнитное поле можно назвать особым видом материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности свет и все другие электромагнитные волны. * С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным. (ru)
  • 在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 36563 (xsd:integer)
dbo:wikiPageRevisionID
  • 744414417 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • In fisica, in particolare nel magnetismo, il campo magnetico è un campo vettoriale solenoidale generato nello spazio dal moto di una carica elettrica o da un campo elettrico variabile nel tempo. Insieme al campo elettrico esso costituisce il campo elettromagnetico, responsabile dell'interazione elettromagnetica in particolare il campo magnetico e i fenomeni legati ad esso sono sempre spiegabili come manifestazioni relativistiche del solo campo elettrico. (it)
  • 磁場(じば、英語: Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。この項では一般的な磁場の性質、及び‘ H ’を扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。 (ja)
  • In de fysica en de elektriciteitsleer is een magnetisch veld een veld dat de ruimte doordringt en dat een magnetische kracht op bewegende elektrische ladingen en magnetische dipolen uitoefent. Magnetische velden omgeven elektrische stromen, magnetische dipolen, en veranderende elektrische velden. De grootte en richting worden uitgedrukt in een vector, de magnetische veldsterkte . Een verwante grootheid is de magnetische fluxdichtheid (ook magnetische inductie genoemd). (nl)
  • Pole magnetyczne – stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia, w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego albo obu. (pl)
  • A magnetic field is the magnetic effect of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field. The term is used for two distinct but closely related fields denoted by the symbols B and H, where H is measured in units of amperes per meter (symbol: A·m−1 or A/m) in the SI. B is measured in teslas (symbol:T; note that although the symbol is capital T, "tesla" is written in lower case in the SI system) and newtons per meter per ampere (symbol: N·m−1·A−1 or N/(m·A)) in the SI. B is most commonly defined in terms of the Lorentz force it exerts on moving electric charges. (en)
  • المجال المغناطيسي أو الحقل المغناطيسي ويسمى أحياناً بالحث المغناطيسي (بالإنكليزية: Magnetic Field) وهي قوة مغناطيسية تنشأ في الحيز المحيط بالجسم المغناطيسي أو الموصل الذي يمر به تيار كهربائي، أو بتعبير أبسط يمكن وصفها بأنها المنطقة المحيطة بالمغناطيس ويظهر فيها أثره (على مواد معينة). إذا وضعت إبرة بوصلة في المجال المغناطيسي ذو قوة ما فإنها توجه نفسها في اتجاه معين في كل جزء من المجال والخطوط المرسومة في اتجاه الإبرة عند النقط المختلفة تحدد الوضع العام للخطوط التي هي عليها القوة المغناطيسية في المجال. (ar)
  • Un campo magnético es una descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos. El campo magnético en cualquier punto está especificado por dos valores, la dirección y la magnitud; de tal forma que es un campo vectorial. Específicamente, el campo magnético es un vector axial, como lo son los momentos mecánicos y los campos rotacionales. El campo magnético es más comúnmente definido en términos de la fuerza de Lorentz ejercida en cargas eléctricas. Campo magnético puede referirse a dos separados pero muy relacionados símbolos B y H. (es)
  • En physique, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace, permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents. (fr)
  • Campos magnéticos cercam materiais em correntes elétricas e são detectados pela força que exercem sobre materiais magnéticos ou cargas elétricas em movimento. O campo magnético em qualquer lugar possui tanto uma direção quanto uma magnitude (ou força), por tanto é um campo vetorial. (pt)
  • Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля. Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты). Кроме этого, оно возникает в результате изменения во времени электрического поля. Основной силовой характеристикой магнитного поля является вектор магнитной индукции (ru)
  • 在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 (zh)
rdfs:label
  • Magnetic field (en)
  • حقل مغناطيسي (ar)
  • Magnetfeld (de)
  • Campo magnético (es)
  • Champ magnétique (fr)
  • Campo magnetico (it)
  • 磁場 (ja)
  • Magnetisch veld (nl)
  • Pole magnetyczne (pl)
  • Campo magnético (pt)
  • Магнитное поле (ru)
  • 磁場 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:field of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of