In mathematics, local coefficients is an idea from algebraic topology, a kind of half-way stage between homology theory or cohomology theory with coefficients in the usual sense, in a fixed abelian group A, and general sheaf cohomology which, roughly speaking, allows coefficients to vary from point to point in a topological space X. Such a concept was introduced by Norman Steenrod.

Property Value
dbo:abstract
  • In mathematics, local coefficients is an idea from algebraic topology, a kind of half-way stage between homology theory or cohomology theory with coefficients in the usual sense, in a fixed abelian group A, and general sheaf cohomology which, roughly speaking, allows coefficients to vary from point to point in a topological space X. Such a concept was introduced by Norman Steenrod. (en)
  • 在數學中,局部系統或稱局部係數是源於代數拓撲的一種觀念,它是常係數的同調或上同調理論的推廣。這個觀念也能應用於代數幾何 。 用層論的語言來講,局部系統是局部上同構於常數層的阿貝爾群層。若此層整體來看也同構於常數層,則就回到了傳統的常係數層上同調理論。例子包括了帶有平坦聯絡的向量叢,基本群的線性表示則給出了局部同構於向量空間常數層的局部系統。 局部系統是一个关于拓扑学的小作品。你可以通过编辑与修订扩充其内容。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3461103 (xsd:integer)
dbo:wikiPageRevisionID
  • 683174721 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • In mathematics, local coefficients is an idea from algebraic topology, a kind of half-way stage between homology theory or cohomology theory with coefficients in the usual sense, in a fixed abelian group A, and general sheaf cohomology which, roughly speaking, allows coefficients to vary from point to point in a topological space X. Such a concept was introduced by Norman Steenrod. (en)
  • 在數學中,局部系統或稱局部係數是源於代數拓撲的一種觀念,它是常係數的同調或上同調理論的推廣。這個觀念也能應用於代數幾何 。 用層論的語言來講,局部系統是局部上同構於常數層的阿貝爾群層。若此層整體來看也同構於常數層,則就回到了傳統的常係數層上同調理論。例子包括了帶有平坦聯絡的向量叢,基本群的線性表示則給出了局部同構於向量空間常數層的局部系統。 局部系統是一个关于拓扑学的小作品。你可以通过编辑与修订扩充其内容。 (zh)
rdfs:label
  • Local system (en)
  • 局部系統 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of