In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression. (This term should be distinguished from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.)

Property Value
dbo:abstract
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) في الإحصاء، الانحدار الخطي البسيط هو أسلوب إحصائي يستخدم في قياس العلاقة بين متغيرين على هيئة علاقة دالة، يسمى أحد المتغيرات (متغير تابع) والآخر (متغير مستقل أو مُفسِر) وهو المتسبب في تغير المتغير التابع، والانحدار الخطي كأداة للقياس لا تُحدد أي المتغيرات يكون تابع أو مستقل إنما يلجأ الباحث إلى النظرية الاقتصادية في تحديد المتغيرات، مثال : تفسير ظاهرة الاستهلاك بالدخل (مع ثبات العوامل الأخرى) فالنظرية الاقتصادية تقول أن استهلاك الفرد مرتبط بالدخل. وبالتالي فالباحث يسعى إلى إعطاء شكل للعلاقة بين المتغيرات الاقتصادية على شكل دالة : حيث أن Y المتغير التابع (الاستهلاك)، X المتغير المستقل (الدخل)، و F الدالة. (ar)
  • Die lineare Regression, die einen Spezialfall des allgemeinen Konzepts der Regressionsanalyse darstellt, ist ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige Variable durch eine oder mehrere unabhängige Variablen zu erklären. Das Beiwort „linear“ ergibt sich dadurch, dass die abhängige Variable eine Linearkombination der Regressionskoeffizienten darstellt (aber nicht notwendigerweise der unabhängigen Variablen). Der Begriff Regression bzw. Regression zur Mitte wurde vor allem durch den Statistiker Francis Galton geprägt. (de)
  • En estadística la regresión lineal o ajuste lineal es un modelo matemático usado para aproximar la relación de dependencia entre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como: donde: : variable dependiente, explicada o regresando. : variables explicativas, independientes o regresores. : parámetros, miden la influencia que las variables explicativas tienen sobre el regrediendo. donde es la intersección o término "constante", las son los parámetros respectivos a cada variable independiente, y es el número de parámetros independientes a tener en cuenta en la regresión. La regresión lineal puede ser contrastada con la regresión no lineal. (es)
  • En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression d'une variable expliquée sur une ou plusieurs variables explicatives dans lequel on fait l'hypothèse que la fonction qui relie les variables explicatives à la variable expliquée est linéaire dans ses paramètres. On parle aussi de modèle linéaire ou de modèle de régression linéaire. En général, le modèle de régression linéaire désigne un modèle dans lequel l'espérance conditionnelle de sachant est une transformation affine de . Cependant, on peut aussi considérer des modèles dans lesquels c'est la médiane conditionnelle de sachant ou n'importe quel quantile de la distribution de sachant qui est une transformation affine de . Le modèle de régression linéaire est souvent estimé par la méthode des moindres carrés mais il existe aussi de nombreuses autres méthodes pour estimer ce modèle. On peut par exemple estimer le modèle par maximum de vraisemblance ou encore par inférence bayésienne. Bien qu'ils soient souvent présentés ensemble, le modèle linéaire et la méthode des moindres carrés ne désignent pas la même chose. Le modèle linéaire désigne une classe de modèles qui peuvent être estimés par un grand nombre de méthodes, et la méthode des moindres carrés désigne une méthode d'estimation. Elle peut être utilisée pour estimer différents types de modèles. (fr)
  • La regressione formalizza e risolve il problema di una relazione funzionale tra variabili misurate sulla base di dati campionari estratti da un'ipotetica popolazione infinita. Originariamente Galton utilizzava il termine come sinonimo di correlazione, tuttavia oggi in statistica l'analisi della regressione è associata alla risoluzione del modello lineare. Per la loro versatilità, le tecniche della regressione lineare trovano impiego nel campo delle scienze applicate: chimica, geologia, biologia, fisica, ingegneria, medicina, nonché nelle scienze sociali: economia, linguistica, psicologia e sociologia. Più formalmente, in statistica la regressione lineare rappresenta un metodo di stima del valore atteso condizionato di una variabile dipendente, o endogena, , dati i valori di altre variabili indipendenti, o esogene, : . L'uso dei termini endogeno/esogeno è talvolta criticato, in quanto implicherebbe una nozione di causalità che l'esistenza di una regressione non prevede; in determinati contesti, provocherebbe inoltre confusione, essendo ad esempio il concetto di esogeneità in econometria formalmente definito tramite l'ipotesi di ortogonalità alla base delle proprietà statistiche della regressione lineare col metodo dei minimi quadrati. (it)
  • 線形回帰(せんけいかいき、linear regression)とは、統計学における回帰分析の一種である。 (ja)
  • Regresja liniowa – metoda estymowania wartości oczekiwanej zmiennej przy znanych wartościach innej zmiennej lub zmiennych .Szukana zmienna jest tradycyjnie nazywana zmienną objaśnianą lub zależną. Inne zmienne nazywa się zmiennymi objaśniającymi lub niezależnymi. Zarówno zmienne objaśniane i objaśniające mogą być wielkościami skalarnymi lub wektorami. Regresja w ogólności to problem estymacji warunkowej wartości oczekiwanej. Regresja liniowa jest nazywana liniową, gdyż zakładanym modelem zależności między zmiennymi zależnymi a niezależnymi, jest funkcja liniowa. (pl)
  • Em estatística ou econometria, regressão linear é uma equação para se estimar a condicional (valor esperado) de uma variável y, dados os valores de algumas outras variáveis x. A regressão, em geral, trata da questão de se estimar um valor condicional não esperado. A regressão linear é chamada "linear" porque se considera que a relação da resposta às variáveis é uma função linear de alguns parâmetros. Os modelos de regressão que não são uma função linear dos parâmetros se chamam modelos de regressão não-linear. Sendo uma das primeiras formas de análise regressiva a ser estudada rigorosamente, e usada extensamente em aplicações práticas. Isso acontece porque modelos que dependem de forma linear dos seus parâmetros desconhecidos, são mais fáceis de ajustar que os modelos não-lineares aos seus parâmetros, e porque as propriedades estatísticas dos estimadores resultantes são fáceis de determinar. (pt)
  • 在統計學中,線性回歸(Linear regression)是利用稱為線性回歸方程的最小平方函數對一個或多個自變量和因變量之間關係進行建模的一種回歸分析。這種函數是一個或多個稱為回歸係數的模型參數的線性組合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。) 在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。 线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。 线性回归有很多实际用途。分为以下两大类: 1. * 如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。 2. * 给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。 线性回归模型经常用最小二乘逼近来拟合,但他们也可能用别的方法来拟合,比如用最小化“拟合缺陷”在一些其他规范里(比如最小绝对误差回归),或者在桥回归中最小化最小二乘损失函数的惩罚。相反,最小二乘逼近可以用来拟合那些非线性的模型。因此,尽管“最小二乘法”和“线性模型”是紧密相连的,但他们是不能划等号的。 (zh)
  • Линейная регрессия (англ. Linear regression) — используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) с линейной функцией зависимости. Модель линейной регрессии является часто используемой и наиболее изученной в эконометрике. А именно изучены свойства оценок параметров, получаемых различными методами при предположениях о вероятностных характеристиках факторов, и случайных ошибок модели. Предельные (асимптотические) свойства оценок нелинейных моделей также выводятся исходя из аппроксимации последних линейными моделями. Необходимо отметить, что с эконометрической точки зрения более важное значение имеет линейность по параметрам, чем линейность по факторам модели. (ru)
  • In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression. (This term should be distinguished from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.) In linear regression, the relationships are modeled using linear predictor functions whose unknown model parameters are estimated from the data. Such models are called linear models. Most commonly, the conditional mean of y given the value of X is assumed to be an affine function of X; less commonly, the median or some other quantile of the conditional distribution of y given X is expressed as a linear function of X. Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of y given X, rather than on the joint probability distribution of y and X, which is the domain of multivariate analysis. Linear regression was the first type of regression analysis to be studied rigorously, and to be used extensively in practical applications. This is because models which depend linearly on their unknown parameters are easier to fit than models which are non-linearly related to their parameters and because the statistical properties of the resulting estimators are easier to determine. Linear regression has many practical uses. Most applications fall into one of the following two broad categories: * If the goal is prediction, or forecasting, or error reduction, linear regression can be used to fit a predictive model to an observed data set of y and X values. After developing such a model, if an additional value of X is then given without its accompanying value of y, the fitted model can be used to make a prediction of the value of y. * Given a variable y and a number of variables X1, ..., Xp that may be related to y, linear regression analysis can be applied to quantify the strength of the relationship between y and the Xj, to assess which Xj may have no relationship with y at all, and to identify which subsets of the Xj contain redundant information about y. Linear regression models are often fitted using the least squares approach, but they may also be fitted in other ways, such as by minimizing the "lack of fit" in some other norm (as with least absolute deviations regression), or by minimizing a penalized version of the least squares loss function as in ridge regression (L2-norm penalty) and lasso (L1-norm penalty). Conversely, the least squares approach can be used to fit models that are not linear models. Thus, although the terms "least squares" and "linear model" are closely linked, they are not synonymous. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 48758386 (xsd:integer)
dbo:wikiPageRevisionID
  • 745044251 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • Die lineare Regression, die einen Spezialfall des allgemeinen Konzepts der Regressionsanalyse darstellt, ist ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige Variable durch eine oder mehrere unabhängige Variablen zu erklären. Das Beiwort „linear“ ergibt sich dadurch, dass die abhängige Variable eine Linearkombination der Regressionskoeffizienten darstellt (aber nicht notwendigerweise der unabhängigen Variablen). Der Begriff Regression bzw. Regression zur Mitte wurde vor allem durch den Statistiker Francis Galton geprägt. (de)
  • 線形回帰(せんけいかいき、linear regression)とは、統計学における回帰分析の一種である。 (ja)
  • Regresja liniowa – metoda estymowania wartości oczekiwanej zmiennej przy znanych wartościach innej zmiennej lub zmiennych .Szukana zmienna jest tradycyjnie nazywana zmienną objaśnianą lub zależną. Inne zmienne nazywa się zmiennymi objaśniającymi lub niezależnymi. Zarówno zmienne objaśniane i objaśniające mogą być wielkościami skalarnymi lub wektorami. Regresja w ogólności to problem estymacji warunkowej wartości oczekiwanej. Regresja liniowa jest nazywana liniową, gdyż zakładanym modelem zależności między zmiennymi zależnymi a niezależnymi, jest funkcja liniowa. (pl)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) في الإحصاء، الانحدار الخطي البسيط هو أسلوب إحصائي يستخدم في قياس العلاقة بين متغيرين على هيئة علاقة دالة، يسمى أحد المتغيرات (متغير تابع) والآخر (متغير مستقل أو مُفسِر) وهو المتسبب في تغير المتغير التابع، والانحدار الخطي كأداة للقياس لا تُحدد أي المتغيرات يكون تابع أو مستقل إنما يلجأ الباحث إلى النظرية الاقتصادية في تحديد المتغيرات، مثال : تفسير ظاهرة الاستهلاك بالدخل (مع ثبات العوامل الأخرى) فالنظرية الاقتصادية تقول أن استهلاك الفرد مرتبط بالدخل. وبالتالي فالباحث يسعى إلى إعطاء شكل للعلاقة بين المتغيرات الاقتصادية على شكل دالة : (ar)
  • En estadística la regresión lineal o ajuste lineal es un modelo matemático usado para aproximar la relación de dependencia entre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como: donde: : variable dependiente, explicada o regresando. : variables explicativas, independientes o regresores. : parámetros, miden la influencia que las variables explicativas tienen sobre el regrediendo. donde es la intersección o término "constante", las son los parámetros respectivos a cada variable independiente, y (es)
  • En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression d'une variable expliquée sur une ou plusieurs variables explicatives dans lequel on fait l'hypothèse que la fonction qui relie les variables explicatives à la variable expliquée est linéaire dans ses paramètres. On parle aussi de modèle linéaire ou de modèle de régression linéaire. En général, le modèle de régression linéaire désigne un modèle dans lequel l'espérance conditionnelle de sachant est une transformation affine de sachant sachant . (fr)
  • La regressione formalizza e risolve il problema di una relazione funzionale tra variabili misurate sulla base di dati campionari estratti da un'ipotetica popolazione infinita. Originariamente Galton utilizzava il termine come sinonimo di correlazione, tuttavia oggi in statistica l'analisi della regressione è associata alla risoluzione del modello lineare. Per la loro versatilità, le tecniche della regressione lineare trovano impiego nel campo delle scienze applicate: chimica, geologia, biologia, fisica, ingegneria, medicina, nonché nelle scienze sociali: economia, linguistica, psicologia e sociologia. (it)
  • Em estatística ou econometria, regressão linear é uma equação para se estimar a condicional (valor esperado) de uma variável y, dados os valores de algumas outras variáveis x. A regressão, em geral, trata da questão de se estimar um valor condicional não esperado. (pt)
  • Линейная регрессия (англ. Linear regression) — используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) с линейной функцией зависимости. (ru)
  • 在統計學中,線性回歸(Linear regression)是利用稱為線性回歸方程的最小平方函數對一個或多個自變量和因變量之間關係進行建模的一種回歸分析。這種函數是一個或多個稱為回歸係數的模型參數的線性組合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。) 在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。 线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。 线性回归有很多实际用途。分为以下两大类: (zh)
  • In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression. (This term should be distinguished from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.) (en)
rdfs:label
  • انحدار خطي (ar)
  • Lineare Regression (de)
  • Regresión lineal (es)
  • Régression linéaire (fr)
  • Regressione lineare (it)
  • 線形回帰 (ja)
  • Regresja liniowa (pl)
  • Regressão linear (pt)
  • Линейная регрессия (ru)
  • 線性回歸 (zh)
  • Linear regression (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of