In mathematics and theoretical physics, an invariant is a property of a system which remains unchanged under some transformation. Invariance does not imply not varying. Instead, it pertains to a condition where there is no variation of the system under observation, and the only applicable condition is the instantaneous condition. Invariance pertains to now(). Now(+1), to a condition where all variations are solely due the internal variables, with no external aspects imparting nor removing energy (Newton´s law of motion: a system in motion continues in motion, unless an external force imparts or removes energy). That condition is met by using the partial derivative function, ∂f(internal)xf(external) and presuming/setting f(external)=constant, leading to ∂f(external)=1 using the chain rule.

Property Value
dbo:abstract
• In mathematics and theoretical physics, an invariant is a property of a system which remains unchanged under some transformation. Invariance does not imply not varying. Instead, it pertains to a condition where there is no variation of the system under observation, and the only applicable condition is the instantaneous condition. Invariance pertains to now(). Now(+1), to a condition where all variations are solely due the internal variables, with no external aspects imparting nor removing energy (Newton´s law of motion: a system in motion continues in motion, unless an external force imparts or removes energy). That condition is met by using the partial derivative function, ∂f(internal)xf(external) and presuming/setting f(external)=constant, leading to ∂f(external)=1 using the chain rule. Obviously, this is a model used solely for calculations, and not a reality. Reality is, that at all and every instance, energy is both removed and added to any system in observation. (en)
dbo:wikiPageID
• 1126641 (xsd:integer)
dbo:wikiPageRevisionID
• 741270481 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
• In mathematics and theoretical physics, an invariant is a property of a system which remains unchanged under some transformation. Invariance does not imply not varying. Instead, it pertains to a condition where there is no variation of the system under observation, and the only applicable condition is the instantaneous condition. Invariance pertains to now(). Now(+1), to a condition where all variations are solely due the internal variables, with no external aspects imparting nor removing energy (Newton´s law of motion: a system in motion continues in motion, unless an external force imparts or removes energy). That condition is met by using the partial derivative function, ∂f(internal)xf(external) and presuming/setting f(external)=constant, leading to ∂f(external)=1 using the chain rule. (en)
rdfs:label
• Invariant (physics) (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of