In thermodynamics, the internal energy of a system is the energy contained within the system, excluding the kinetic energy of motion of the system as a whole and the potential energy of the system as a whole due to external force fields. It keeps account of the gains and losses of energy of the system that are due to changes in its internal state. The internal energy is one of the two cardinal state functions of the state variables of a thermodynamic system.

Property Value
dbo:abstract
  • In thermodynamics, the internal energy of a system is the energy contained within the system, excluding the kinetic energy of motion of the system as a whole and the potential energy of the system as a whole due to external force fields. It keeps account of the gains and losses of energy of the system that are due to changes in its internal state. The internal energy of a system can be changed by transfers of matter and by work and heat transfer. When matter transfer is prevented by impermeable containing walls, the system is said to be closed. Then the first law of thermodynamics states that the increase in internal energy is equal to the total heat added plus the work done on the system by its surroundings. If the containing walls pass neither matter nor energy, the system is said to be isolated and its internal energy cannot change. The first law of thermodynamics may be regarded as establishing the existence of the internal energy. The internal energy is one of the two cardinal state functions of the state variables of a thermodynamic system. (en)
  • في الديناميكا الحرارية وفي فيزياء الأجسام (بالإنجليزية: internal energy) تعد الطاقة الداخلية طاقة الحركة الناتجة عن حركة الجزيئات في المادة سواء كانت حركة انتقالية أو دورانية ،و اهتزازية ,كذلك طاقة الوضع الناتجة عن الحركة الاهتزازية ، والطاقة الكهربية للذرات المكونة للجزيئات أو البلّورات. وتشمل الطاقة الداخلية أيضا على الطاقة المخزونة في الترابط الكيميائي ، وطاقة الإلكترونات الحرة في الموصلات والمعادن. كما يمكن حساب الطاقة الداخلية للإشعاع الكهرومغناطيسي أو إشعاع الجسم الأسود. وهي دالة لنظام معين معزول وله صفات معينة. (ar)
  • Die innere Energie ist die gesamte für thermodynamische Umwandlungsprozesse zur Verfügung stehende Energie eines physikalischen Systems, das sich in Ruhe und im thermodynamischen Gleichgewicht befindet. Die innere Energie setzt sich aus einer Vielzahl anderer Energieformen zusammen (), sie ist nach dem ersten Hauptsatz der Thermodynamik in einem abgeschlossenen System konstant. Die innere Energie ändert sich, wenn das System mit seiner Umgebung Wärme oder Arbeit austauscht. Die Änderung der inneren Energie ist dann gleich der Summe aus der dem System zugeführten Wärme und der Arbeit , die am System geleistet wird, dieses aber als Ganzes im Ruhezustand belässt: Die innere Energie ist eine extensive Zustandsgröße und ein thermodynamisches Potential des Systems. Aus der kalorischen Zustandsgleichung des Systems ergibt sich, wie die innere Energie aus anderen Zustandsgrößen (z. B. Druck, Temperatur, Teilchenzahl, Entropie, Volumen) zu berechnen ist. (de)
  • En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de: * la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que forman un cuerpo respecto al centro de masas del sistema, * la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo. Si pensamos en constituyentes atómicos o moleculares, será el resultado de la suma de la energía cinética de las moléculas o átomos que constituyen el sistema (de sus energías de traslación, rotación y vibración) y de la energía potencial intermolecular (debida a las fuerzas intermoleculares) e intramolecular de la energía de enlace. * En un gas ideal monoatómico bastará con considerar la energía cinética de traslación de sus átomos. * En un gas ideal poliatómico, deberemos considerar además la energía vibracional y rotacional de las mismas. * En un líquido o sólido deberemos añadir la energía potencial que representa las interacciones moleculares. Desde el punto de vista de la termodinámica, en un sistema cerrado (o sea, de paredes impermeables), la variación total de energía interna es igual a la suma de las cantidades de energía comunicadas al sistema en forma de calor y de trabajo (en termodinámica se considera el trabajo negativo cuando este entra en el sistema termodinámico, positivo cuando sale). Aunque el calor transmitido depende del proceso en cuestión, la variación de energía interna es independiente del proceso, sólo depende del estado inicial y final, por lo que se dice que es una función de estado. Del mismo modo es una diferencial exacta, a diferencia de , que depende del proceso. (es)
  • L’énergie interne d’un système thermodynamique est une fonction d'état extensive, associée à ce système. Elle est égale à la somme de l’énergie cinétique de chaque entité élémentaire de masse non nulle et de toutes les énergies potentielles d’interaction des entités élémentaires de ce système. En fait, elle correspond à l'énergie intrinsèque du système, définie à l'échelle microscopique, à l'exclusion de l'énergie cinétique ou potentielle d'interaction du système avec son environnement, à l'échelle macroscopique. L’énergie interne est donc une composante de l’énergie totale d'un système, définie par la relation suivante : La valeur de l’énergie interne n’est ni mesurable ni calculable. On peut néanmoins, avoir accès à des variations d'énergie interne car la fonction énergie interne est une fonction d'état. (fr)
  • L'energia interna è l'energia posseduta da un sistema a livello microscopico, cioè l'energia posseduta dalle entità molecolari di cui è composto il sistema, escludendo i contributi "macroscopici", in particolare l'energia cinetica e potenziale del sistema visto nella sua interezza. Essa tiene conto dei seguenti contributi: * energia traslazionale, rotazionale, e vibrazionale delle entità molecolari che lo compongono; * energia posseduta dagli elettroni; * energia al punto zero (energia fondamentale posseduta a 0 K). Tale forma di energia è una funzione di stato, cioè le sue variazioni dipendono solo dallo stato iniziale e finale della trasformazione termodinamica e non dal particolare percorso seguito per arrivare dallo stato iniziale allo stato finale. L'energia interna esprime inoltre la quantità di energia libera di un sistema termodinamico in una trasformazione isocora e isoentropica (a volume ed entropia costanti). Nel sistema internazionale viene misurata in joule. (it)
  • 内部エネルギー(ないぶエネルギー、英: internal energy)は、系の熱力学的な状態を表現する、エネルギーの次元をもつ示量性状態量の一つである。系が全体として持っている力学的エネルギー(運動エネルギーと位置エネルギー)に対する用語として、内部エネルギーと呼ばれる。記号は U や E で表されることが多い。 (ja)
  • Inwendige energie, een begrip uit de thermodynamica, is een vorm van energie die gebonden is aan materie. Het is de som van een aantal vormen van energie waaronder de bindingsenergie en bewegingsenergie van de moleculen waaruit de stof bestaat. Inwendige energie is indirect gedefinieerd door de eerste wet van de thermodynamica: hierin is ΔU de verandering van inwendige energie gedurende het proces;Q de warmte toegevoegd aan het systeem;W de mechanische arbeid verricht door het systeem. De wet wordt ook wel geschreven als , in welk geval W de mechanische arbeid verricht op het systeem voorstelt. Q en W zijn geen toestandsgrootheden, dat wil zeggen dat de toegevoerde warmte en de verrichte arbeid afhangen van het gevolgde traject tussen begin- en eindtoestand. Deze wegafhankelijkheden heffen elkaar op, zodat U wel een toestandsgrootheid is. Als op een reversibele manier een kleine hoeveelheid dQ warmte aan een systeem toegevoegd wordt, dan geldt: . Hierin is T de temperatuur in Kelvin en S de entropie in Joule per Kelvin; dit zijn wel toestandsgrootheden van het systeem. De arbeid die door het systeem wordt verricht als het volume op een reversibele manier wordt veranderd, is: . Hierbij is V het volume en P de druk in evenwichtstoestand. Het minteken duidt aan dat wanneer het volume van het systeem toeneemt, het systeem arbeid verricht op zijn omgeving en er een energietransfer van het systeem naar de omgeving plaatsvindt.De inwendige energie verandering kan dus uitgedrukt worden als: Ook al is deze vergelijking is afgeleid voor het geval van reversibele verandering, de vergelijking is algemeen geldig. De inwendige energie is immers een toestandsgrootheid die voor een gegeven substantie uniek bepaald is als we de entropie en het volume specificeren. De bovenstaande vergelijking wordt ook wel de fundamentele thermodynamische relatie genoemd. Wordt deze totale differentiaal term voor term gelijkgesteld aan de standaard-uitdrukking voor dU(S,V): dan: en: Als we het aantal deeltjes in het systeem N ook als een onafhankelijke variabele beschouwen, dan moet dU geschreven worden als: waarbij μ de chemische potentiaal is. μ kan op geheel vergelijkbare wijze geschreven worden als een partiële afgeleide van U: Uit integratie van dU volgt dan dat: We kunnen dit als volgt inzien.Stel dat we twee identieke systemen met identieke toestandsgrootheden samenvoegen. Dan wordt de inwendige energie van het gecombineerde systeem uiteraard twee keer zo groot (dit is overigens niet het geval wanneer de deeltjes in het systeem een lange drachts-interactie hebben zoals in geval van de zwaartekracht). De entropie, het volume en het aantal deeltjes worden dan ook twee keer zo groot. Deze variabelen worden daarom extensieve variabelen genoemd. De variabelen die hetzelfde blijven zijn de druk, de temperatuur en de chemische potentiaal. Deze variabelen worden daarom intensieve variabelen genoemd. Omdat U hier wordt geschreven als functie van uitsluitend de extensieve variabelen S, N en V geldt bij vermenigvuldiging daarvan met een willekeurige dimensieloze factor 1+ε: Door reeksontwikkelen tot op eerste orde in krijgen we: We zien dat de nulde orde term in aan beide kanten identiek is aan . Als we de coëfficiënt van aan beide kanten gelijkstellen en de uitdrukking (1), (2), en (3) voor de partiële afgeleiden van U substitueren, dan krijgen we: (nl)
  • Energia wewnętrzna (Ew lub u, U) – w termodynamice jest to całkowita energia układu będąca sumą energii potencjalnej i kinetycznej makroskopowych części układu, energii kinetycznej cząsteczek, energii potencjalnej oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych, itd. Wartość energii wewnętrznej jest trudna do ustalenia ze względu na jej złożony charakter. W opisie procesów termodynamicznych istotniejsza i łatwiejsza do określenia jest zmiana energii wewnętrznej, dlatego określając energię wewnętrzną układu pomija się te rodzaje energii, które nie zmieniają się w rozpatrywanym układzie termodynamicznym. Na przykład dla gazu doskonałego jedyną składową energii wewnętrznej, która może się zmieniać, jest energia kinetyczna cząsteczek gazu. Stąd zmiana energii wewnętrznej równa jest zmianie energii kinetycznej cząsteczek. Energia wewnętrzna jest jednym z potencjałów termodynamicznych. Według I zasady termodynamiki energia wewnętrzna stanowi jednoznaczną funkcję stanu, którą dla danej porcji gazu można wyrazić przez dowolne dwa parametry stanu, np. ciśnienie, temperaturę, objętość właściwą, entalpię, entropię i inne. (pl)
  • A energia de um sistema termodinâmico, composto por um grande número de partículas tais como íons, moléculas, átomos ou mesmo fótons, pode ser decomposta em três partes: 1. * As energias cinéticas atreladas ao movimento de todo o sistema e ao movimento das partículas que o constituem. 2. * As energias potenciais do sistema devidas às interações com o ambiente externo (expressas via campos gravitacionais, elétricos ou magnéticos), e devidas às interações internas entre as moléculas, íons, átomos, elétrons, núcleos, núcleons e demais elementos que constituem esse sistema. 3. * As energias de campos radiantes confinados pelas fronteiras do sistema, tipicamente as energias de fótons térmicos confinados. Existem, portanto, dois níveis de escala para a energia total do sistema: * Nível macroscópico, sensível aos sentidos, ou seja, definido em escala humana ou superior, abarcando a energia cinética macroscópica do sistema quando em movimento em relação a um referencial inercial à parte dele, e as energias potenciais do sistema quando imerso em campos gravitacional, elétrico ou magnético macroscopicamente estabelecidos por fontes externas. * Nível microscópico, inacessível aos nossos sentidos, abarcando a soma das energias cinéticas das partículas constituintes - atrelada ao movimento térmico destas; as energias potenciais de todas as interações entre tais partículas microscópicas, com destaque para a elétrica no caso das energias nas ligações químicas (energia química) e para a nuclear no caso das energias de interação entre núcleons (energia nuclear); e a soma das energias das partículas de campo confinadas. A energia interna de um sistema termodinâmico (semi)clássico - onde massa e energia são tratadas como grandezas não relacionadas - corresponde à soma das suas energias microscópicas. Em sistemas didáticos ou modeláveis de forma simples - entendidos como compostos apenas por partículas com massa e absolutamente neutras - não há energia radiante confinada ou essa é em prática ignorável, e a energia interna escreve-se usualmente: A energia interna tem por parcelas apenas as energias atreladas diretamente aos constituintes do sistema e por tal encerradas pela fronteira que define o sistema, nela não figurando as energias atreladas às interações entre o sistema e sua vizinhança, portanto. A 1º Lei da termodinâmica estabelece que a variação da energia interna () de um sistema corresponde à energia térmica (Q) recebida pelo sistema na forma de calor durante o processo menos a correspondente energia cedida pelo sistema à sua vizinhança na forma de trabalho (W). A unidade do Sistema Internacional de Unidades utilizada para a energia interna é o joule (J). (pt)
  • Вну́тренняя эне́ргия — принятое в физике сплошных сред, термодинамике и статистической физике название для той части полной энергии термодинамической системы, которая не зависит от выбора системы отсчета и которая в рамках рассматриваемой проблемы может изменяться. То есть для равновесных процессов в системе отсчета, относительно которой центр масс рассматриваемого макроскопического объекта покоится, изменения полной и внутренней энергии всегда совпадают. Перечень составных частей полной энергии, входящих во внутреннюю энергию, непостоянен и зависит от решаемой задачи. Иначе говоря, внутренняя энергия — это не специфический вид энергии, а совокупность тех изменяемых составных частей полной энергии системы, которые следует учитывать в конкретной ситуации. Деление полной энергии системы на потенциальную, кинетическую, внутреннюю и т. д. зависит от формальных определений этих понятий и поэтому достаточно условно. Так, иногда во внутреннюю энергию не включают потенциальную энергию, связанную с полями внешних сил. Важно, что правильность получаемых при решении конкретной задачи результатов зависит от корректности составления уравнения энергетического баланса, а не от терминологических нюансов. Воспринимаемые органами чувств человека нагрев или охлаждение макроскопического объекта есть проявления изменения внутренней энергии этого объекта. Обратное неверно: постоянство температуры объекта не означает неизменность его внутренней энергии (например, температура системы неизменна при фазовых переходах первого рода — плавлении, кипении и др.). (ru)
  • 在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作功,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串熱力學操作及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 {Nj}。內能 U(S,V,{Nj}) 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 內能是一系統內的狀態函數,因為其值僅取決於該系統的目前狀態,而與達到此一狀態所採之途徑或過程無關。內能是個外延物理量。內能是個基本熱動力位能。使用勒壤得轉換,可從內能開始,在數學上建構出其他的熱動力位能。這些函數的狀態變數,部分外延變數會被其共軛內含變數所取代。因為僅是將外延變數由內含變數所取代並無法得出其他熱動力位能,所以勒壤得轉換是必要的。熱力學系統的另一個基本狀態函數為該系統的熵 S(U,V,{Nj}),是個除熵 S 這個狀態變數被內能 U 所取代外,具有相同狀態變數之狀態函數。 雖然內能是個宏觀物理量,內能也可在微觀層面上由兩個假設的量來解釋。一個是系統內粒子的微觀運動(平移、旋轉、振動)所產生的微觀動能。另一個是與粒子間的化學鍵及組成物質的靜止質量能量等微觀力有關之位能。在微觀的量與系統因作功、加熱或物質轉移而產生之能量增損的量之間,並不存在一個簡單的普遍關係。 能量的國際單位為焦耳(J)。有時使用單位質量(公斤)的內能(稱之為「比內能」)會比較方便。比內能的國際單位為 J/kg。若比內能以物質數量(莫耳)的單位來表示,則稱之為「莫耳內能」,且該單位為 J/mol。 從統計力學的觀點來看,內能等於系統總能量的系綜平均值。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 340757 (xsd:integer)
dbo:wikiPageRevisionID
  • 744943643 (xsd:integer)
dbp:basequantities
  • m2*kg/s2
dbp:border
  • 1 (xsd:integer)
dbp:name
  • Internal energy
dbp:symbols
  • U
dbp:title
  • Derivation of dU in terms of dT and dP
  • Derivation of dU in terms of dT and dV
  • Proof of pressure independence for an ideal gas
dbp:unit
dct:subject
rdf:type
rdfs:comment
  • في الديناميكا الحرارية وفي فيزياء الأجسام (بالإنجليزية: internal energy) تعد الطاقة الداخلية طاقة الحركة الناتجة عن حركة الجزيئات في المادة سواء كانت حركة انتقالية أو دورانية ،و اهتزازية ,كذلك طاقة الوضع الناتجة عن الحركة الاهتزازية ، والطاقة الكهربية للذرات المكونة للجزيئات أو البلّورات. وتشمل الطاقة الداخلية أيضا على الطاقة المخزونة في الترابط الكيميائي ، وطاقة الإلكترونات الحرة في الموصلات والمعادن. كما يمكن حساب الطاقة الداخلية للإشعاع الكهرومغناطيسي أو إشعاع الجسم الأسود. وهي دالة لنظام معين معزول وله صفات معينة. (ar)
  • 内部エネルギー(ないぶエネルギー、英: internal energy)は、系の熱力学的な状態を表現する、エネルギーの次元をもつ示量性状態量の一つである。系が全体として持っている力学的エネルギー(運動エネルギーと位置エネルギー)に対する用語として、内部エネルギーと呼ばれる。記号は U や E で表されることが多い。 (ja)
  • In thermodynamics, the internal energy of a system is the energy contained within the system, excluding the kinetic energy of motion of the system as a whole and the potential energy of the system as a whole due to external force fields. It keeps account of the gains and losses of energy of the system that are due to changes in its internal state. The internal energy is one of the two cardinal state functions of the state variables of a thermodynamic system. (en)
  • Die innere Energie ist die gesamte für thermodynamische Umwandlungsprozesse zur Verfügung stehende Energie eines physikalischen Systems, das sich in Ruhe und im thermodynamischen Gleichgewicht befindet. Die innere Energie setzt sich aus einer Vielzahl anderer Energieformen zusammen (), sie ist nach dem ersten Hauptsatz der Thermodynamik in einem abgeschlossenen System konstant. Die innere Energie ändert sich, wenn das System mit seiner Umgebung Wärme oder Arbeit austauscht. Die Änderung der inneren Energie ist dann gleich der Summe aus der dem System zugeführten Wärme und der Arbeit (de)
  • En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de: * la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que forman un cuerpo respecto al centro de masas del sistema, * la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo. (es)
  • L’énergie interne d’un système thermodynamique est une fonction d'état extensive, associée à ce système. Elle est égale à la somme de l’énergie cinétique de chaque entité élémentaire de masse non nulle et de toutes les énergies potentielles d’interaction des entités élémentaires de ce système. En fait, elle correspond à l'énergie intrinsèque du système, définie à l'échelle microscopique, à l'exclusion de l'énergie cinétique ou potentielle d'interaction du système avec son environnement, à l'échelle macroscopique. car la fonction énergie interne est une fonction d'état. (fr)
  • L'energia interna è l'energia posseduta da un sistema a livello microscopico, cioè l'energia posseduta dalle entità molecolari di cui è composto il sistema, escludendo i contributi "macroscopici", in particolare l'energia cinetica e potenziale del sistema visto nella sua interezza. Essa tiene conto dei seguenti contributi: * energia traslazionale, rotazionale, e vibrazionale delle entità molecolari che lo compongono; * energia posseduta dagli elettroni; * energia al punto zero (energia fondamentale posseduta a 0 K). Nel sistema internazionale viene misurata in joule. (it)
  • Inwendige energie, een begrip uit de thermodynamica, is een vorm van energie die gebonden is aan materie. Het is de som van een aantal vormen van energie waaronder de bindingsenergie en bewegingsenergie van de moleculen waaruit de stof bestaat. Inwendige energie is indirect gedefinieerd door de eerste wet van de thermodynamica: hierin is ΔU de verandering van inwendige energie gedurende het proces;Q de warmte toegevoegd aan het systeem;W de mechanische arbeid verricht door het systeem. De wet wordt ook wel geschreven als . . dan: en: waarbij μ de chemische potentiaal is. krijgen we: (nl)
  • Energia wewnętrzna (Ew lub u, U) – w termodynamice jest to całkowita energia układu będąca sumą energii potencjalnej i kinetycznej makroskopowych części układu, energii kinetycznej cząsteczek, energii potencjalnej oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych, itd. Energia wewnętrzna jest jednym z potencjałów termodynamicznych. Według I zasady termodynamiki energia wewnętrzna stanowi jednoznaczną funkcję stanu, którą dla danej porcji gazu można wyrazić przez dowolne dwa parametry stanu, np. ciśnienie, temperaturę, objętość właściwą, entalpię, entropię i inne. (pl)
  • A energia de um sistema termodinâmico, composto por um grande número de partículas tais como íons, moléculas, átomos ou mesmo fótons, pode ser decomposta em três partes: 1. * As energias cinéticas atreladas ao movimento de todo o sistema e ao movimento das partículas que o constituem. 2. * As energias potenciais do sistema devidas às interações com o ambiente externo (expressas via campos gravitacionais, elétricos ou magnéticos), e devidas às interações internas entre as moléculas, íons, átomos, elétrons, núcleos, núcleons e demais elementos que constituem esse sistema. 3. * As energias de campos radiantes confinados pelas fronteiras do sistema, tipicamente as energias de fótons térmicos confinados. (pt)
  • Вну́тренняя эне́ргия — принятое в физике сплошных сред, термодинамике и статистической физике название для той части полной энергии термодинамической системы, которая не зависит от выбора системы отсчета и которая в рамках рассматриваемой проблемы может изменяться. То есть для равновесных процессов в системе отсчета, относительно которой центр масс рассматриваемого макроскопического объекта покоится, изменения полной и внутренней энергии всегда совпадают. Перечень составных частей полной энергии, входящих во внутреннюю энергию, непостоянен и зависит от решаемой задачи. Иначе говоря, внутренняя энергия — это не специфический вид энергии, а совокупность тех изменяемых составных частей полной энергии системы, которые следует учитывать в конкретной ситуации. (ru)
  • 在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作功,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串熱力學操作及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 {Nj}。內能 U(S,V,{Nj}) 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 從統計力學的觀點來看,內能等於系統總能量的系綜平均值。 (zh)
rdfs:label
  • Internal energy (en)
  • طاقة داخلية (ar)
  • Innere Energie (de)
  • Energía interna (es)
  • Énergie interne (fr)
  • Energia interna (it)
  • 内部エネルギー (ja)
  • Inwendige energie (nl)
  • Energia wewnętrzna (pl)
  • Energia interna (pt)
  • Внутренняя энергия (ru)
  • 内能 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of