An integer (from the Latin integer meaning "whole") is a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75,  5 1⁄2, and √2 are not. The set of integers consists of zero (0), the natural numbers (1, 2, 3, …), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e. −1, −2, −3, …). This is often denoted by a boldface Z ("Z") or blackboard bold

Property Value
dbo:abstract
  • An integer (from the Latin integer meaning "whole") is a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75,  5 1⁄2, and √2 are not. The set of integers consists of zero (0), the natural numbers (1, 2, 3, …), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e. −1, −2, −3, …). This is often denoted by a boldface Z ("Z") or blackboard bold (Unicode U+2124 ℤ) standing for the German word Zahlen ([ˈtsaːlən], "numbers"). ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the (rational) integers are the algebraic integers that are also rational numbers. (en)
  • الأعداد الصحيحة (بالإنجليزية: Integers) هي الأعداد التي يمكن كتابتها بدون استخدام الكسور أو الفواصل العشرية، وتتكون مجموعة الأعداد الصحيحة -والتي تعتبر مجموعة جزئية من مجموعة الأعداد الحقيقية- من الأعداد الطبيعة (1، 2، 3، ..) والصفر والأعداد السالبة المقابلة للأعداد الطبعيية (-1، -2، -3، ..)، وعليه فمجموعة الأعداد الصحيحة تكون مجموعة غير منتهية شأنها في ذلك شأن مجموعة الأعداد الطبيعية، وعادة ما يرمز لها بالحرف اللاتيني Z. (ar)
  • Die ganzen Zahlen (auch Ganzzahlen, lat. numeri integri) sind eine Erweiterung der natürlichen Zahlen. Die ganzen Zahlen umfassen alle Zahlen …, −3, −2, −1, 0, 1, 2, 3, … und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse. Die Menge der ganzen Zahlen wird meist mit dem Buchstaben mit Doppelstrich bezeichnet (das „Z“ steht für das deutsche Wort „Zahlen“). Das alternative Symbol ist mittlerweile weniger verbreitet; ein Nachteil dieses Fettdruck-Symbols ist die schwierige handschriftliche Darstellbarkeit. Der Unicode des Zeichens lautet U+2124 und hat die Gestalt ℤ. Die obige Aufzählung der ganzen Zahlen gibt auch gleichzeitig in aufsteigender Folge deren natürliche Anordnung wieder. Die Zahlentheorie ist der Zweig der Mathematik, der sich mit Eigenschaften der ganzen Zahlen beschäftigt. Die Repräsentation ganzer Zahlen im Computer erfolgt üblicherweise durch den Datentyp Integer. Die ganzen Zahlen werden im Mathematikunterricht üblicherweise in der fünften bis siebten Klasse eingeführt. (de)
  • Los números enteros son un conjunto numérico que contiene los números naturales, sus inversos aditivos y el cero. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2, ...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo. Vamos a tener entonces: * Números naturales Ν: 1, 2, 3... * Inversos aditivos de los números naturales: -1, -2, -3... * El cero: 0 El conjunto de todos los números enteros se representa por la letra ℤ = {..., −3, −2, −1, 0, +1, +2, +3, ...}, letra inicial del vocablo alemán Zahlen («números», pronunciado [ˈtsaːlən]). En la recta numérica encontramos los números negativos a la izquierda del cero y a su derecha los positivos Al igual que los números naturales, los números enteros pueden sumarse, restarse, multiplicarse y dividirse, de forma similar a los primeros. Sin embargo, en el caso de los enteros es necesario tener en cuenta el signo del resultado. Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20 alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20 alumnos. También hay ciertas magnitudes, como la temperatura o la altura toman valores por debajo del cero. La altura del Everest es 8848 metros por encima del nivel del mar, y por el contrario, la orilla del mar Muerto está 423 metros por debajo del nivel del mar; es decir, su altura se puede expresar como −423 m. (es)
  • En mathématiques, un entier relatif est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à zéro sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3… tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3… L'entier zéro lui-même est donc le seul nombre à la fois positif et négatif. Les entiers relatifs sont aussi quelquefois appelés entiers rationnels, appellation qui ne doit pas entraîner de confusion avec les nombres rationnels ou fractions. Un nombre réel est entier s'il est sans partie fractionnaire, c'est-à-dire si son écriture décimale ne comprend pas de chiffre (autre que zéro) « après la virgule ». Les entiers relatifs permettent d'exprimer la différence de deux entiers naturels quelconques. Entre autres significations de la différence, on peut citer la position sur un axe orienté par rapport à un point de référence (un axe à positions discrètes, c'est-à-dire discontinues) ; le déplacement depuis une position d'origine, dans un sens ou dans l'autre ; ou encore la variation d'une valeur entière, donc comptée en unités (variation positive pour un gain, négative pour une perte). L'ensemble des entiers relatifs est noté « Z », lettre capitale grasse dans les textes dactylographiés, peu à peu supplantée par la graphie manuscrite avec une barre oblique ajourée : « ℤ ».La présence d'un astérisque en exposant (« Z* ») désigne en général l'ensemble des entiers relatifs non nuls, même si cette notation est utilisée parfois pour l'ensemble des éléments inversibles, c'est-à-dire la paire d'entiers {−1 ; 1}.La notation « Z− » désigne l'ensemble des entiers négatifs. Il est plus rare de trouver la notation « Z+ », remplacée par la notation « N » des entiers naturels par identification. Cet ensemble est (totalement) ordonné pour la relation de comparaison usuelle héritée des entiers naturels. Il est aussi muni des opérations d'addition et de multiplication qui fondent la notion d'anneau en algèbre. Les entiers relatifs sont parfois appelés « entiers rationnels », suivant la dénomination rational integer en anglais, et comme cas particuliers d'entiers algébriques sur le corps de nombres des rationnels. On trouve cette appellation chez Nicolas Bourbakiet certains mathématiciens s'inscrivant dans le mouvement des mathématiques modernes, parmi lesquels Georges Papy. (fr)
  • I numeri interi (o numeri interi relativi o, semplicemente, numeri relativi) sono formati dall'unione dei numeri naturali (0, 1, 2, ...) e dei numeri interi negativi (−1, −2, −3,...), costruiti ponendo un segno “−” davanti ai naturali. L'insieme di tutti i numeri interi in matematica viene indicato con Z o , perché è la lettera iniziale di “Zahl” che in tedesco significa numero (originariamente "far di conto", infatti l'espressione implica l'utilizzo dei numeri negativi). Gli interi vengono quindi definiti come l'insieme dei numeri che sono il risultato tra sottrazioni di numeri naturali. I numeri interi possono essere sommati, sottratti e moltiplicati e il risultato rimane un numero intero. L'inverso di un numero intero non è però un intero in generale, ma un numero razionale: i matematici esprimono questo fatto dicendo che è un anello commutativo, ma non un campo. (it)
  • 数学における整数(せいすう、英: integer, whole number, 独: Ganze Zahl, 仏: nombre entier)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある。 (ja)
  • De gehele getallen zijn alle getallen in de rij …, −3, −2, −1, 0, 1, 2, 3, … die voortgezet wordt door er steeds 1 bij te tellen of er 1 af te trekken. De gehele getallen omvatten de natuurlijke getallen, dus de getallen waarmee geteld wordt, en de tegengestelden daarvan, de negatieve gehele getallen. Een geheel getal heet 'geheel' omdat het zonder fractionele of decimale componenten kan worden geschreven. De getallen 21, 4 en -121 zijn bijvoorbeeld gehele getallen, terwijl 9,75, 5½ en geen gehele getallen zijn. De verzameling gehele getallen is een deelverzameling van de reële getallen, en wordt meestal voorgesteld door een vet gedrukte Z of het symbool (Unicode U+2124 ℤ), wat voor Zahlen (het Duitse woord voor getallen) staat. Het gedeelte van de wiskunde dat zich bezighoudt met de studie naar de eigenschappen van de gehele getallen noemt men de getaltheorie. (nl)
  • Liczby całkowite – liczby naturalne dodatnie oraz liczby przeciwne do nich , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne. Zbiór liczb całkowitych oznaczamy w matematyce symbolem (od niem. Zahlen – liczby). W Polsce w szkołach podstawowych i średnich stosuje się jednak oznaczenie , żeby ułatwić skojarzenie z polską nazwą. (pl)
  • Os números inteiros são constituídos dos números naturais e seus simétricos negativos, incluindo o zero. O conjunto de todos os números inteiros é representado pela letra (originada da palavra alemã Zahl). Os inteiros (juntamente com a operação de adição) formam o menor grupo que contém o monoide aditivo dos números naturais. Como os números naturais, os inteiros formam um conjunto infinito contável. Os números inteiros podem ser simétricos, quando os números têm sinais opostos, ou pode existir também o valor absoluto de um número inteiro, que é a distância entre a origem e o número. (pt)
  • Целые числа — расширение множества натуральных чисел , получаемое добавлением к нуля и отрицательных чисел вида . Множество целых чисел обозначается Необходимость рассмотрения целых чисел продиктована невозможностью, в общем случае, вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Сумма, разность и произведение двух целых чисел дают снова целые числа, то есть целые числа образуют кольцо относительно операций сложения и умножения. Впервые отрицательные числа стали использовать в древнем Китае и в Индии, в Европе их ввели в математический обиход Николя Шюке (1484 год) и Михаэль Штифель (1544). (ru)
  • 整数,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示为粗體Z或 ,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 14563 (xsd:integer)
dbo:wikiPageRevisionID
  • 744915694 (xsd:integer)
dbp:below
  • The Zahlen symbol, often used to denote the set of all integers
dbp:id
  • 403 (xsd:integer)
  • p/i051290
dbp:style
  • width:20.0em
dbp:title
  • Integer
dct:subject
rdf:type
rdfs:comment
  • الأعداد الصحيحة (بالإنجليزية: Integers) هي الأعداد التي يمكن كتابتها بدون استخدام الكسور أو الفواصل العشرية، وتتكون مجموعة الأعداد الصحيحة -والتي تعتبر مجموعة جزئية من مجموعة الأعداد الحقيقية- من الأعداد الطبيعة (1، 2، 3، ..) والصفر والأعداد السالبة المقابلة للأعداد الطبعيية (-1، -2، -3، ..)، وعليه فمجموعة الأعداد الصحيحة تكون مجموعة غير منتهية شأنها في ذلك شأن مجموعة الأعداد الطبيعية، وعادة ما يرمز لها بالحرف اللاتيني Z. (ar)
  • 数学における整数(せいすう、英: integer, whole number, 独: Ganze Zahl, 仏: nombre entier)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある。 (ja)
  • Liczby całkowite – liczby naturalne dodatnie oraz liczby przeciwne do nich , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne. Zbiór liczb całkowitych oznaczamy w matematyce symbolem (od niem. Zahlen – liczby). W Polsce w szkołach podstawowych i średnich stosuje się jednak oznaczenie , żeby ułatwić skojarzenie z polską nazwą. (pl)
  • Os números inteiros são constituídos dos números naturais e seus simétricos negativos, incluindo o zero. O conjunto de todos os números inteiros é representado pela letra (originada da palavra alemã Zahl). Os inteiros (juntamente com a operação de adição) formam o menor grupo que contém o monoide aditivo dos números naturais. Como os números naturais, os inteiros formam um conjunto infinito contável. Os números inteiros podem ser simétricos, quando os números têm sinais opostos, ou pode existir também o valor absoluto de um número inteiro, que é a distância entre a origem e o número. (pt)
  • 整数,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示为粗體Z或 ,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。 (zh)
  • An integer (from the Latin integer meaning "whole") is a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75,  5 1⁄2, and √2 are not. The set of integers consists of zero (0), the natural numbers (1, 2, 3, …), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e. −1, −2, −3, …). This is often denoted by a boldface Z ("Z") or blackboard bold (en)
  • Die ganzen Zahlen (auch Ganzzahlen, lat. numeri integri) sind eine Erweiterung der natürlichen Zahlen. Die ganzen Zahlen umfassen alle Zahlen …, −3, −2, −1, 0, 1, 2, 3, … und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse. Die Menge der ganzen Zahlen wird meist mit dem Buchstaben mit Doppelstrich bezeichnet (das „Z“ steht für das deutsche Wort „Zahlen“). Das alternative Symbol ist mittlerweile weniger verbreitet; ein Nachteil dieses Fettdruck-Symbols ist die schwierige handschriftliche Darstellbarkeit. Der Unicode des Zeichens lautet U+2124 und hat die Gestalt ℤ. (de)
  • Los números enteros son un conjunto numérico que contiene los números naturales, sus inversos aditivos y el cero. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2, ...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo. Vamos a tener entonces: En la recta numérica encontramos los números negativos a la izquierda del cero y a su derecha los positivos (es)
  • En mathématiques, un entier relatif est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à zéro sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3… tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3… L'entier zéro lui-même est donc le seul nombre à la fois positif et négatif. Les entiers relatifs sont aussi quelquefois appelés entiers rationnels, appellation qui ne doit pas entraîner de confusion avec les nombres rationnels ou fractions. (fr)
  • I numeri interi (o numeri interi relativi o, semplicemente, numeri relativi) sono formati dall'unione dei numeri naturali (0, 1, 2, ...) e dei numeri interi negativi (−1, −2, −3,...), costruiti ponendo un segno “−” davanti ai naturali. L'insieme di tutti i numeri interi in matematica viene indicato con Z o , perché è la lettera iniziale di “Zahl” che in tedesco significa numero (originariamente "far di conto", infatti l'espressione implica l'utilizzo dei numeri negativi). Gli interi vengono quindi definiti come l'insieme dei numeri che sono il risultato tra sottrazioni di numeri naturali. (it)
  • De gehele getallen zijn alle getallen in de rij …, −3, −2, −1, 0, 1, 2, 3, … die voortgezet wordt door er steeds 1 bij te tellen of er 1 af te trekken. De gehele getallen omvatten de natuurlijke getallen, dus de getallen waarmee geteld wordt, en de tegengestelden daarvan, de negatieve gehele getallen. Een geheel getal heet 'geheel' omdat het zonder fractionele of decimale componenten kan worden geschreven. De getallen 21, 4 en -121 zijn bijvoorbeeld gehele getallen, terwijl 9,75, 5½ en (Unicode U+2124 ℤ), wat voor Zahlen (het Duitse woord voor getallen) staat. (nl)
  • Целые числа — расширение множества натуральных чисел , получаемое добавлением к нуля и отрицательных чисел вида . Множество целых чисел обозначается Необходимость рассмотрения целых чисел продиктована невозможностью, в общем случае, вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. (ru)
rdfs:label
  • Integer (en)
  • عدد صحيح (ar)
  • Ganze Zahl (de)
  • Número entero (es)
  • Entier relatif (fr)
  • Numero intero (it)
  • 整数 (ja)
  • Geheel getal (nl)
  • Liczby całkowite (pl)
  • Número inteiro (pt)
  • Целое число (ru)
  • 整数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbp:title of
is rdfs:seeAlso of
is foaf:primaryTopic of