In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/ˈsɪntʃ/ or /ˈʃaɪn/), and the hyperbolic cosine "cosh" (/ˈkɒʃ/), from which are derived the hyperbolic tangent "tanh" (/ˈtæntʃ/ or /ˈθæn/), hyperbolic cosecant "csch" or "cosech" (/ˈkoʊʃɛk/ or /ˈkoʊsɛtʃ/), hyperbolic secant "sech" (/ˈʃɛk/ or /ˈsɛtʃ/), and hyperbolic cotangent "coth" (/ˈkoʊθ/ or /ˈkɒθ/), corresponding to the derived trigonometric functions.

Property Value
dbo:abstract
• In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/ˈsɪntʃ/ or /ˈʃaɪn/), and the hyperbolic cosine "cosh" (/ˈkɒʃ/), from which are derived the hyperbolic tangent "tanh" (/ˈtæntʃ/ or /ˈθæn/), hyperbolic cosecant "csch" or "cosech" (/ˈkoʊʃɛk/ or /ˈkoʊsɛtʃ/), hyperbolic secant "sech" (/ˈʃɛk/ or /ˈsɛtʃ/), and hyperbolic cotangent "coth" (/ˈkoʊθ/ or /ˈkɒθ/), corresponding to the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine "arsinh" (also called "asinh" or sometimes "arcsinh") and so on. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the equilateral hyperbola. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector. Hyperbolic functions occur in the solutions of many linear differential equations, for example the equation defining a catenary, of some cubic equations, in calculations of angles and distances in hyperbolic geometry and of Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. In complex analysis, the hyperbolic functions arise as the imaginary parts of sine and cosine. When considered defined by a complex variable, the hyperbolic functions are rational functions of exponentials, and are hence holomorphic. Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert. Riccati used Sc. and Cc. ([co]sinus circulare) to refer to circular functions and Sh. and Ch. ([co]sinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names but altered the abbreviations to what they are today. The abbreviations sh and ch are still used in some other languages, like French and Russian. (en)
dbo:thumbnail
dbo:wikiPageID
• 56567 (xsd:integer)
dbo:wikiPageRevisionID
• 742189335 (xsd:integer)
dbp:bot
• InternetArchiveBot
dbp:colwidth
• 35 (xsd:integer)
dbp:date
• July 2016
dbp:fixAttempted
• yes
dbp:id
• p/h048250
dbp:title
• Hyperbolic functions
dct:subject
rdf:type
rdfs:comment
• In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/ˈsɪntʃ/ or /ˈʃaɪn/), and the hyperbolic cosine "cosh" (/ˈkɒʃ/), from which are derived the hyperbolic tangent "tanh" (/ˈtæntʃ/ or /ˈθæn/), hyperbolic cosecant "csch" or "cosech" (/ˈkoʊʃɛk/ or /ˈkoʊsɛtʃ/), hyperbolic secant "sech" (/ˈʃɛk/ or /ˈsɛtʃ/), and hyperbolic cotangent "coth" (/ˈkoʊθ/ or /ˈkɒθ/), corresponding to the derived trigonometric functions. (en)
rdfs:label
• Hyperbolic function (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of