The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases.Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time. The name "Hurst exponent", or "Hurst coefficient", derives from Harold Edwin Hurst (1880–1978), who was the lead researcher in these studies; the use of the standard notation H for the coefficient relates to his name also.

Property Value
dbo:abstract
  • Der Hurst-Exponent ist eine Kennzahl aus der Chaostheorie bzw. aus der Fraktalgeometrie, die von Benoît Mandelbrot sowohl nach Harold Edwin Hurst als auch nach Otto Ludwig Hölder benannt wurde. Sie stellt einen Abhängigkeitsindex zwischen verschiedenen Größen dar. Zudem kann sie als relative Tendenz einer Zeitreihe gesehen werden. Angewandt auf fraktale Oberflächen stellt sie einen Rauhigkeitskoeffizient dar, der direkt mit der fraktalen Dimension D in Verbindung steht: Der Hurst-Exponent variiert zwischen Null und Eins, wobei größere Werte weichere Formen erzeugen: . (de)
  • The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases.Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time. The name "Hurst exponent", or "Hurst coefficient", derives from Harold Edwin Hurst (1880–1978), who was the lead researcher in these studies; the use of the standard notation H for the coefficient relates to his name also. In fractal geometry, the generalized Hurst exponent has been denoted by H or Hq in honor of both Harold Edwin Hurst and Ludwig Otto Hölder (1859–1937) by Benoît Mandelbrot (1924–2010). H is directly related to fractal dimension, D, and is a measure of a data series' "mild" or "wild" randomness. The Hurst exponent is referred to as the "index of dependence" or "index of long-range dependence". It quantifies the relative tendency of a time series either to regress strongly to the mean or to cluster in a direction. A value H in the range 0.5–1 indicates a time series with long-term positive autocorrelation, meaning both that a high value in the series will probably be followed by another high value and that the values a long time into the future will also tend to be high. A value in the range 0 – 0.5 indicates a time series with long-term switching between high and low values in adjacent pairs, meaning that a single high value will probably be followed by a low value and that the value after that will tend to be high, with this tendency to switch between high and low values lasting a long time into the future. A value of H=0.5 can indicate a completely uncorrelated series, but in fact it is the value applicable to series for which the autocorrelations at small time lags can be positive or negative but where the absolute values of the autocorrelations decay exponentially quickly to zero. This in contrast to the typically power law decay for the 0.5 < H < 1 and 0 < H < 0.5 cases. (en)
  • 赫斯特指数(英语:Hurst exponent)以英国水文学家哈罗德·赫斯特命名,起初被用来分析水库与河流之间的进出流量,后来被广泛用于各行各业的分形分析。利用Hurst参数可以表征网络流量的自相似性,Hurst参数越大,说明流量的自相似程度就越高,也就是说网络的业务流量在很长的时间内都具有长相关性,这主要是由于网络流量的突发性造成的。现有的文献给出的估计方法主要是两大类:时域法和频域法,其中时域法包括R/S分析法、时间方差图法、IDC法,频域法包括Whittle的最大似然估计、小波法等。常用的Hurst估值算法都有不同的适用条件,不能广泛的应用于各种情况,因为每一种算法在时域或者是频域的范围内应用了求和平均的方法,这样就会使得时间序列的高突发可变的细节信息丢失,从而导致出估算结果为负值,增大了估计误差。 (zh)
  • Экспонента Хёрста, показатель Хёрста или коэффициент Хёрста — мера, используемая в анализе временных рядов. Эта величина уменьшается, когда задержка между двумя одинаковыми парами значений во временном ряду увеличивается. Впервые это понятие использовалось в гидрологии в практических целях для определения размеров плотины на реке Нил в условиях непредсказуемых дождей и засух, наблюдаемых в течение длительного времени. Название «Экспонента Херста» или «Коэффициент Херста» дано в честь Гарольда Эдвина Хёрстарусск. (1880—1978) — ведущего исследователя того времени в этой области. Стандартное обозначение H также дано в честь него. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7847320 (xsd:integer)
dbo:wikiPageRevisionID
  • 744646713 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • Der Hurst-Exponent ist eine Kennzahl aus der Chaostheorie bzw. aus der Fraktalgeometrie, die von Benoît Mandelbrot sowohl nach Harold Edwin Hurst als auch nach Otto Ludwig Hölder benannt wurde. Sie stellt einen Abhängigkeitsindex zwischen verschiedenen Größen dar. Zudem kann sie als relative Tendenz einer Zeitreihe gesehen werden. Angewandt auf fraktale Oberflächen stellt sie einen Rauhigkeitskoeffizient dar, der direkt mit der fraktalen Dimension D in Verbindung steht: Der Hurst-Exponent variiert zwischen Null und Eins, wobei größere Werte weichere Formen erzeugen: . (de)
  • 赫斯特指数(英语:Hurst exponent)以英国水文学家哈罗德·赫斯特命名,起初被用来分析水库与河流之间的进出流量,后来被广泛用于各行各业的分形分析。利用Hurst参数可以表征网络流量的自相似性,Hurst参数越大,说明流量的自相似程度就越高,也就是说网络的业务流量在很长的时间内都具有长相关性,这主要是由于网络流量的突发性造成的。现有的文献给出的估计方法主要是两大类:时域法和频域法,其中时域法包括R/S分析法、时间方差图法、IDC法,频域法包括Whittle的最大似然估计、小波法等。常用的Hurst估值算法都有不同的适用条件,不能广泛的应用于各种情况,因为每一种算法在时域或者是频域的范围内应用了求和平均的方法,这样就会使得时间序列的高突发可变的细节信息丢失,从而导致出估算结果为负值,增大了估计误差。 (zh)
  • Экспонента Хёрста, показатель Хёрста или коэффициент Хёрста — мера, используемая в анализе временных рядов. Эта величина уменьшается, когда задержка между двумя одинаковыми парами значений во временном ряду увеличивается. Впервые это понятие использовалось в гидрологии в практических целях для определения размеров плотины на реке Нил в условиях непредсказуемых дождей и засух, наблюдаемых в течение длительного времени. Название «Экспонента Херста» или «Коэффициент Херста» дано в честь Гарольда Эдвина Хёрстарусск. (1880—1978) — ведущего исследователя того времени в этой области. Стандартное обозначение H также дано в честь него. (ru)
  • The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases.Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time. The name "Hurst exponent", or "Hurst coefficient", derives from Harold Edwin Hurst (1880–1978), who was the lead researcher in these studies; the use of the standard notation H for the coefficient relates to his name also. (en)
rdfs:label
  • Hurst-Exponent (de)
  • Hurst exponent (en)
  • Показатель Хёрста (ru)
  • 赫斯特指数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of