In physics, heat is energy that spontaneously passes between a system and its surroundings in some way other than through work or the transfer of matter. When a suitable physical pathway exists, heat flows spontaneously from a hotter to a colder body. The transfer can be by contact between the source and the destination body, as in conduction; or by radiation between remote bodies; or by conduction and radiation through a thick solid wall; or by way of an intermediate fluid body, as in convective circulation; or by a combination of these.

Property Value
dbo:abstract
• In physics, heat is energy that spontaneously passes between a system and its surroundings in some way other than through work or the transfer of matter. When a suitable physical pathway exists, heat flows spontaneously from a hotter to a colder body. The transfer can be by contact between the source and the destination body, as in conduction; or by radiation between remote bodies; or by conduction and radiation through a thick solid wall; or by way of an intermediate fluid body, as in convective circulation; or by a combination of these. Because heat refers to a quantity of energy transferred between two bodies, it is not a state function of either of the bodies, in contrast to temperature and internal energy. Instead, according to the first law of thermodynamics heat exchanged during some process contributes to the change in the internal energy, and the amount of heat can be quantified by the equivalent amount of work that would bring about the same change. While heat flows spontaneously from hot to cold, it is possible to construct a heat pump or refrigeration system that does work to increase the difference in temperature between two systems. Conversely, a heat engine reduces an existing temperature difference to do work on another system. Historically, many energy units for measurement of heat have been used. The standards-based unit in the International System of Units (SI) is the joule (J). Heat is measured by its effect on the states of interacting bodies, for example, by the amount of ice melted or a change in temperature. The quantification of heat via the temperature change of a body is called calorimetry, and is widely used in practice. In calorimetry, sensible heat is defined with respect to a specific chosen state variable of the system, such as pressure or volume. Sensible heat causes a change of the temperature of the system while leaving the chosen state variable unchanged. Heat transfer that occurs at a constant system temperature but changes the state variable is called latent heat with respect to the variable. For infinitesimal changes, the total incremental heat transfer is then the sum of the latent and sensible heat. (en)
dbo:thumbnail
dbo:wikiPageID
• 19593167 (xsd:integer)
dbo:wikiPageRevisionID
• 745065408 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
• In physics, heat is energy that spontaneously passes between a system and its surroundings in some way other than through work or the transfer of matter. When a suitable physical pathway exists, heat flows spontaneously from a hotter to a colder body. The transfer can be by contact between the source and the destination body, as in conduction; or by radiation between remote bodies; or by conduction and radiation through a thick solid wall; or by way of an intermediate fluid body, as in convective circulation; or by a combination of these. (en)
rdfs:label
• Heat (en)
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:product of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:aux of
is dbp:data of
is http://purl.org/linguistics/gold/hypernym of
is foaf:primaryTopic of