In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C which makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

Property Value
dbo:abstract
  • In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C which makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as l-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary topological space, and Grothendieck's theory is loosely regarded as a generalization of classical topology. Under meager point-set hypotheses, namely sobriety, this is completely accurate—it is possible to recover a sober space from its associated site. However simple examples such as the indiscrete topological space show that not all topological spaces can be expressed using Grothendieck topologies. Conversely, there are Grothendieck topologies which do not come from topological spaces. The term "Grothendieck topology" has changed in meaning. In it meant what is now called a Grothendieck pretopology, and some authors still use this old meaning. modified the definition to use sieves rather than covers. Much of the time this does not make much difference, as each Grothendieck pretopology determines a unique Grothendieck topology, though quite different pretopologies can give the same topology. (en)
  • En teoría de categorías, una rama de las matemáticas, una topología de Grothendieck es una estructura definida en una categoría arbitraria C que permita la definición de haces en C, y con ésa la definición de las teorías generales de cohomología. Una categoría junto con una topología de Grothendieck en ella se llama un sitio. Esta herramienta se utiliza en teoría algebraica de números y geometría algebraica, para definir principalmente la cohomología étale de esquemas, pero también para la cohomologia playa y el cohomología cristalina. Observe que una topología de Grothendieck no es una topología en el sentido clásico. (es)
  • Eine Grothendieck-Topologie ist ein mathematisches Konzept, das es erlaubt,in einem abstrakten kategoriellen Rahmen eine Garbentheorie und eine Kohomologietheorie zu entwickeln. Eine Kategorie, auf der eine Grothendieck-Topologie erklärt ist, nennt man einen Situs. Auf einem Situs kann eine Garbe erklärt werden. Das Konzept der Grothendieck-Topologie wurde um 1960 von Alexander Grothendieck entwickelt, um in der algebraischen Geometrie in positiver Charakteristik einen Ersatz für die topologischen Kohomologietheorien wie bspw. die singuläre Kohomologie zu haben. Die Motivation hierfür kam von den Vermutungen von André Weil, die einen engen Zusammenhang zwischen der topologischen Gestalt (etwa den Bettizahlen) einer Varietät und der Anzahl der Punkte auf ihr über einem endlichen Körper voraussagte (Weil-Vermutungen). Die in diesem Kontext eingeführte étale Topologie zusammen mit der étalen Kohomologie und der l-adischen Kohomologie ermöglichte schließlich den Beweis der Weil-Vermutungen durch Pierre Deligne. (de)
  • Un site est une catégorie équipée d'une (pré)-topologie de Grothendieck. En ce sens, un site généralise la notion d'espace topologique et de locale (en). Cette topologie permet de définir des faisceaux sur la catégorie. (fr)
  • グロタンディーク位相(Grothendieck topology)とは位相空間上の開集合系が成り立つ性質を公理化し、圏の上に定義された一般化された位相のことである。またそのような位相を持つ圏を景(けい、site)といい、その位相を用いることにより位相空間上での層の理論が使えてコホモロジー理論を得ることができる。歴史的には代数幾何学のヴュイユ予想を解決するためにアレクサンドル・グロタンディークがエタール・コホモロジーを定義する際に導入された。 (ja)
  • Топология Гротендика — это структура на категории, которая делает её объекты похожими на открытые множества топологического пространства. Категория вместе с топологией Гротендика называется ситусом или сайтом. Топологии Гротендика аксиоматизируют определение открытого покрытия. Используя это определение покрытия, делается возможным определение пучков на категории и их когомологий. Впервые это было сделано Александром Гротендиком, для того, чтобы определить этальные когомологии схемы. Существует естественный способ сопоставить топологическому пространству топологию Гротендика, поэтому топологии Гротендика часто рассматривают как обобщение обычных топологий. Для большого класса топологических пространств действительно можно восстановить топологию по её топологии Гротендика, однако уже для антидискретного пространства это не так. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12910 (xsd:integer)
dbo:wikiPageRevisionID
  • 741772642 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • En teoría de categorías, una rama de las matemáticas, una topología de Grothendieck es una estructura definida en una categoría arbitraria C que permita la definición de haces en C, y con ésa la definición de las teorías generales de cohomología. Una categoría junto con una topología de Grothendieck en ella se llama un sitio. Esta herramienta se utiliza en teoría algebraica de números y geometría algebraica, para definir principalmente la cohomología étale de esquemas, pero también para la cohomologia playa y el cohomología cristalina. Observe que una topología de Grothendieck no es una topología en el sentido clásico. (es)
  • Un site est une catégorie équipée d'une (pré)-topologie de Grothendieck. En ce sens, un site généralise la notion d'espace topologique et de locale (en). Cette topologie permet de définir des faisceaux sur la catégorie. (fr)
  • グロタンディーク位相(Grothendieck topology)とは位相空間上の開集合系が成り立つ性質を公理化し、圏の上に定義された一般化された位相のことである。またそのような位相を持つ圏を景(けい、site)といい、その位相を用いることにより位相空間上での層の理論が使えてコホモロジー理論を得ることができる。歴史的には代数幾何学のヴュイユ予想を解決するためにアレクサンドル・グロタンディークがエタール・コホモロジーを定義する際に導入された。 (ja)
  • In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C which makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. (en)
  • Eine Grothendieck-Topologie ist ein mathematisches Konzept, das es erlaubt,in einem abstrakten kategoriellen Rahmen eine Garbentheorie und eine Kohomologietheorie zu entwickeln. Eine Kategorie, auf der eine Grothendieck-Topologie erklärt ist, nennt man einen Situs. Auf einem Situs kann eine Garbe erklärt werden. Das Konzept der Grothendieck-Topologie wurde um 1960 von Alexander Grothendieck entwickelt, um in der algebraischen Geometrie in positiver Charakteristik einen Ersatz für die topologischen Kohomologietheorien wie bspw. die singuläre Kohomologie zu haben. Die Motivation hierfür kam von den Vermutungen von André Weil, die einen engen Zusammenhang zwischen der topologischen Gestalt (etwa den Bettizahlen) einer Varietät und der Anzahl der Punkte auf ihr über einem endlichen Körper vora (de)
  • Топология Гротендика — это структура на категории, которая делает её объекты похожими на открытые множества топологического пространства. Категория вместе с топологией Гротендика называется ситусом или сайтом. Топологии Гротендика аксиоматизируют определение открытого покрытия. Используя это определение покрытия, делается возможным определение пучков на категории и их когомологий. Впервые это было сделано Александром Гротендиком, для того, чтобы определить этальные когомологии схемы. (ru)
rdfs:label
  • Grothendieck topology (en)
  • Grothendieck-Topologie (de)
  • Topología de Grothendieck (es)
  • Site (mathématiques) (fr)
  • グロタンディーク位相 (ja)
  • Топология Гротендика (ru)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of