Graphene (/ˈɡræf.iːn/) is an allotrope of carbon in the form of a two-dimensional, atomic-scale, honey-comb lattice in which one atom forms each vertex. It is the basic structural element of other allotropes, including graphite, charcoal, carbon nanotubes and fullerenes. It can also be considered as an indefinitely large aromatic molecule, the ultimate case of the family of flat polycyclic aromatic hydrocarbons. The global market for graphene is reported to have reached $9 million by 2012 with most sales in the semiconductor, electronics, battery energy and composites industries.

Property Value
dbo:abstract
  • الغرافين مادة متآصلة من الكربون، ثنائية الأبعاد بنيتها البلورية سداسية (وتسمى أيضا قرص العسل أو سلك الدجاج). وهي أرفع مادة معروفة على الإطلاق حتى الآن، يعادل سمكها ذرة كربون واحدة فقط، ورغم ذلك تعتبر إحدى أقوى (أمتن) المواد المعروفة. تعتبر من موصلات الكهرباء وكفائتها ذات كفاءة النحاس، وهي أفضل موصل للحرارة على الإطلاق. وتكاد مادة الجرافين تكون شفافة تماما، ورغم ذلك فهي أيضا كثيفة للغاية لدرجة عدم سماحها بعبور أصغر ذرة (الهيليوم) من خلال هيكلها السداسي. طورها عالمان روسيان من جامعة مانشستر سنة 2004 وحاز كلاهما على جائزة نوبل في الفيزياء سنة 2010، اسمهم أندريه غييم وكونستانتين نوفوسيلوف - وهي هجين إلكتروني من نوع sp2. المادة عبارة عن صفيحة بطول 50 ذرة وعرض ذرة واحدة. أبرز مزايا هذه المادة, السرعة الفائقة لإلكتروناتها, حيث تبلغ (44000 سم2\ ث.ف) عند درجة حرارة الغرفة. فيتوقع لهذه المادة أن تساعد في رفع سرعة الحواسيب وشاشات اللمس إلى مستويات عليا. حيث ذكر باحثون من آي بي إم في صفر 1431 هـ \ فبراير 2010 أنهم حققوا سرعات تصل إلى 100 جيجاهرتز باستعمال مقحل (ترانزستور) من مادة الغرافين.. ومن الأسباب كذلك التي تدعم مادة الغرافين إمكانية تشويب مادة الغرافين وصنع نبيطة بخطوة واحدة.. الأمر الذي يرشحه لإزاحة السيليكون عن عرش أشباه الموصلات. (ar)
  • Graphene (/ˈɡræf.iːn/) is an allotrope of carbon in the form of a two-dimensional, atomic-scale, honey-comb lattice in which one atom forms each vertex. It is the basic structural element of other allotropes, including graphite, charcoal, carbon nanotubes and fullerenes. It can also be considered as an indefinitely large aromatic molecule, the ultimate case of the family of flat polycyclic aromatic hydrocarbons. Graphene has many extraordinary properties. It is about 100 times stronger than the strongest steel. It conducts heat and electricity efficiently and is nearly transparent. Graphene also shows a large and nonlinear diamagnetism, even greater than graphite, and can be levitated by Nd-Fe-B magnets. Researchers have identified the bipolar transistor effect, ballistic transport of charges and large quantum oscillations in the material. Scientists have theorized about graphene for decades. It has likely been unknowingly produced in small quantities for centuries, through the use of pencils and other similar applications of graphite. It was originally observed in electron microscopes in 1962, but only studied while supported on metal surfaces. The material was later rediscovered, isolated and characterized in 2004 by Andre Geim and Konstantin Novoselov at the University of Manchester. Research was informed by existing theoretical descriptions of its composition, structure and properties. High-quality graphene proved to be surprisingly easy to isolate, making more research possible. This work resulted in the two winning the Nobel Prize in Physics in 2010 "for groundbreaking experiments regarding the two-dimensional material graphene." The global market for graphene is reported to have reached $9 million by 2012 with most sales in the semiconductor, electronics, battery energy and composites industries. (en)
  • Le graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Bien que connu depuis de nombreuses années et théorisé dès 1947 par P.R. WALLACE, il n'a pu être extrait qu'en 2004 par Andre Geim, du département de physique de l'université de Manchester. Pour cette découverte, Andre Geim a reçu, avec Konstantin Novoselov, le prix Nobel de physique en 2010. Le graphène peut être produit de plusieurs manières, dont : * pour le cas du graphène exfolié, l'extraction mécanique du graphite (technique mise au point en 2004) ; * pour le cas du graphène épitaxié, le chauffage d'un cristal de carbure de silicium, ce qui permet la libération des atomes de silicium. Le graphène est une forme allotropique cristalline du carbone et constitue l'élément structurel de base d’autres formes allotropiques, comme le graphite, les nanotubes de carbone (forme cylindrique) et les fullerènes (forme sphérique). Ce matériau possède le record de conduction thermique : jusqu'à 5 300 W·m-1·K-1. Des recherches récentes montrent qu'il pourrait devenir un matériau idéal pour le stockage d'énergie. Il fait l'objet d'un projet-phare européen (Future and Emerging Technologies Flagship). (fr)
  • Graphen [gʁa'feːn] (Betonung auf der zweiten Silbe: Graphen; englisch graphene) ist die Bezeichnung für eine Modifikation des Kohlenstoffs mit zweidimensionaler Struktur, in der jedes Kohlenstoffatom im Winkel von 120° von drei weiteren umgeben ist, sodass sich ein bienenwabenförmiges Muster ausbildet. Da Kohlenstoff vierwertig ist, müssen dabei je „Wabe“ zwei Doppelbindungen auftreten, die jedoch nicht lokalisiert sind. Es handelt sich um eine Verkettung von Benzolringen, wie sie in aromatischen Verbindungen oft auftritt. Obwohl ein einzelner Benzolring in der Darstellungsweise der Valenzstrichformeln drei Doppelbindungen hat, haben zusammenhängende Benzolringe in dieser Darstellungsweise rein formal nur zwei Doppelbindungen pro Ring. Deshalb lässt sich die Struktur besser beschreiben, indem man die delokalisierten Bindungen als großen Kreis im Benzolring darstellt. Die Bindungsverhältnisse im Graphen sind in der beschrieben. Graphen lässt sich als polycyclischer aromatischer Kohlenwasserstoff beschreiben. Am „Rande“ des Wabengitters müssen andere Atomgruppen angedockt sein, die aber – je nach dessen Größe – die Eigenschaften des Graphens kaum verändern. In der Theorie wurden einlagige Kohlenstoffschichten, Graphene, zum ersten Mal verwendet, um den Aufbau und die elektronischen Eigenschaften komplexer aus Kohlenstoff bestehender Materialien beschreiben zu können. Unendlich ausgedehnte und überall flache strikt zweidimensionale Strukturen sind allerdings aufgrund eines rigorosen mathematischen Theorems, des Mermin-Wagner-Theorems und seiner Varianten, nicht möglich, da sie nachweislich thermodynamisch instabil sind. Deshalb herrschte bei Chemikern und Physikern allgemeines Erstaunen, als Konstantin Novoselov, Andre Geim und ihre Mitarbeiter 2004 die Darstellung freier, einschichtiger Graphenkristalle bekannt gaben. Deren unerwartete Stabilität könnte durch die Existenz metastabiler Zustände oder durch Ausbildung einer unregelmäßigen Welligkeit (engl. crumpling) der Graphenschicht erklärt werden. 2010 wurden Geim und Novoselov für ihre Untersuchungen mit dem Nobelpreis für Physik ausgezeichnet, nachdem sie nicht nur für die Darstellung dieser Systeme Entscheidendes geleistet hatten, sondern auch viele ihrer ungewöhnlichen Eigenschaften entdeckt hatten. Gedanklich lässt sich durch Stapeln solcher einlagiger Schichten die dreidimensionale Struktur des Graphits erzeugen, mit dem Graphen strukturell eng verwandt ist. Stellt man sich die einlagigen Schichten dagegen aufgerollt vor, so erhält man gestreckte Kohlenstoffnanoröhren. Ebenfalls gedanklich kann man einige der Sechserringe durch Fünferringe ersetzen, wodurch sich die ebene Fläche zu einer Kugelfläche wölbt und sich bei bestimmten Zahlenverhältnissen Fullerene ergeben: Ersetzt man zum Beispiel 12 von 32 Ringen, entsteht das kleinste Fulleren (C60). Theoretisch sind auch einlagige Schichten aus anderen vierwertigen Elementen wie Silicium und Germanium möglich. 2012 wurden in der Tat Silicen-Schichten in Form einer leicht gewellten einlagigen Schicht aus Silicium experimentell nachgewiesen. (de)
  • El grafeno es una sustancia formada por carbono puro, con átomos dispuestos en patrón regular hexagonal, similar al grafito, pero en una hoja de un átomo de espesor. Se considera 100 veces más fuerte que el acero y su densidad es aproximadamente la misma que la de la fibra de carbono, y es aproximadamente cinco veces más ligero que el aluminio, una lámina de 1 metro cuadrado pesa tan solo 0,77 miligramos. Es un alótropo del carbono, un teselado hexagonal plano formado por átomos de carbono y enlaces covalentes que se generan a partir de la superposición de los híbridos sp2 de los carbonos enlazados. El Premio Nobel de Física de 2010 se les otorgó a los científicos Andréy Gueim y Konstantín Novosiólov por sus revolucionarios descubrimientos acerca de este material. Mediante la hibridación sp2 se explican mejor los ángulos de enlace, a 120°, de la estructura hexagonal del grafeno. Como cada uno de los carbonos contiene cuatro electrones de valencia en el estado hibridado, tres de esos electrones se alojan en los híbridos sp2, y forman el esqueleto de enlaces covalentes simples de la estructura. El electrón sobrante se aloja en un orbital atómico tipo P perpendicular al plano de los híbridos. El solapamiento lateral de dichos orbitales da lugar a formación de orbitales de tipo π. Algunas de estas combinaciones propician un gigantesco orbital molecular deslocalizado entre todos los átomos de carbono que constituyen la capa de grafeno. El nombre proviene de intercambio –en el vocablo grafito– de sufijos: «ito» por «eno»: propio de los carbonos con enlaces dobles. En realidad, la estructura del grafito puede considerarse una pila de gran cantidad de láminas de grafeno superpuestas. Los enlaces entre las distintas capas de grafeno apiladas se deben a fuerzas de Van der Waals e interacciones de los orbitales π de los átomos de carbono. En el grafeno la longitud de los enlaces carbono-carbono es de aproximadamente 142 pm (picómetros). Es el componente estructural básico de todos los demás elementos grafíticos, incluidos el propio grafito, los nanotubos de carbono y los fullerenos. A esta estructura también se le puede considerar una molécula aromática extremadamente extensa en las dos direcciones espaciales. Es decir, sería el caso límite de una familia de moléculas planas de hidrocarburos aromáticos policíclicos denominada grafenos. (es)
  • Il grafene è un materiale costituito da uno strato monoatomico di atomi di carbonio (avente cioè uno spessore equivalente alle dimensioni di un solo atomo). Ha la resistenza meccanica del diamante e la flessibilità della plastica. Come suggerisce la desinenza -ene del nome, gli atomi sono ibridati nella forma sp², e si dispongono quindi a formare esagoni con angoli di 120°. In presenza di imperfezioni (pentagoni o ettagoni invece degli esagoni), la struttura si deforma: quando ci sono 12 pentagoni, si ha un fullerene. La presenza di singoli pentagoni o ettagoni provoca invece increspature della superficie. Le scoperte sul grafene e le sue applicazioni (realizzazione di un transistor) conseguite nel 2004 sono valse il premio Nobel per la fisica 2010 ai due fisici Andrej Gejm e Konstantin Novoselov dell'Università di Manchester.Nonostante i problemi iniziali riscontrati nell'applicabilità del grafene a singolo strato, i due fisici hanno evoluto il materiale fino alla costruzione del cosiddetto grafene a doppio strato, il quale garantisce più resistenza e flessibilità di utilizzo. (it)
  • グラフェン (graphene) とは、1原子の厚さのsp2結合炭素原子のシート。炭素原子とその結合からできた蜂の巣のような六角形格子構造をとっている。名称の由来はグラファイト (Graphite) と「ENE」から。グラファイト自体もグラフェンシートが多数積み重なってできている。 グラフェンの炭素間結合距離は約0.142 nm。炭素同素体(グラファイト、カーボンナノチューブ、フラーレンなど)の基本的な構造である。 (ja)
  • Grafeen is een enkellaagsvlak van koolstofatomen. Het kan voorgesteld worden als een vlak bijenraat of kippengaas met de dikte van één atoom. Grafiet kan gezien worden als een opeenstapeling van lagen grafeen. De koolstofatomen in grafeen zijn alle sp2-gehybridiseerd. Grafeen is 200 keer beter bestand tegen breken dan staal, waardoor het voor zover bekend een van de sterkste materialen is. Grafeen is ook een van de snelste halfgeleiders (zo'n honderd keer sneller dan silicium). Hardwarefabrikanten doen onderzoek naar transistoren uit grafeen. Als grafeen met waterstofgas reageert, ontstaat grafaan. Bij volledige verzadiging met waterstof zijn alle koolstofatomen dan sp3-gehybridiseerd. In 2010 won Andre Geim samen met Konstantin Novoselov de Nobelprijs voor de natuurkunde voor hun onderzoek naar de eigenschappen van grafeen. (nl)
  • Grafen – płaska struktura złożona z atomów węgla, połączonych w sześciokąty. Materiał ten kształtem przypomina plaster miodu, a ponieważ ma jednoatomową grubość, w uproszczeniu określa się go mianem struktury dwuwymiarowej. Grafen jest przedmiotem zainteresowania przemysłu ze względu na różne właściwości, w tym elektryczne i mechaniczne. Opis teoretyczny grafenu powstał już w 1947 w pracy Wallace’a. Jednak w tym samym okresie opublikowano szereg innych prac, w których dowodzono, że grafen, jak i inne materiały dwuwymiarowe, nie może istnieć w przyrodzie. Na początku lat 80. ubiegłego wieku pojawiały się artykuły wskazujące, że grafen można wytworzyć. W 2004 roku nastąpił przełom – równolegle grupy z Georgii i Manchesteru pokazały, że wytworzony przez nich grafen ma unikatowe własności, które zostały przewidziane wcześniej. Po tych publikacjach nastąpiło gwałtowne przyspieszenie prac nad grafenem – zarówno pod kątem czysto badawczym, jak i w poszukiwaniu coraz lepszych metod wytwarzania tego materiału. Za badania grafenu Andriej Gejm i Konstantin Nowosiołow z uniwersytetu w Manchesterze otrzymali w 2010 Nagrodę Nobla w dziedzinie fizyki. (pl)
  • O grafeno é uma das formas cristalinas do carbono, assim como o diamante, o grafite, os nanotubos de carbono e fulerenos. O grafeno de alta qualidade é muito forte, leve, quase transparente, um excelente condutor de calor e eletricidade. É o material mais forte já demonstrado, consistindo em uma folha plana de átomos de carbono densamente compactados em uma grade de duas dimensões. É um ingrediente para materiais de grafite de outras dimensões, como fulerenos 0D, nanotubos 1D ou grafite 3D. O termo grafeno foi proposto como uma combinação de grafite e o sufixo -eno por Hanns-Peter Boehm. Foi ele quem descreveu as folhas de carbono em 1962. Na época em que foi isolado, muitos pesquisadores que estudavam nanotubos de carbono já estavam bem familiarizados com a composição, a estrutura e as propriedades do grafeno, que haviam sido calculadas décadas antes. A combinação de familiaridade, propriedades extraordinárias e surpreendente facilidade de isolamento permitiu uma explosão nas pesquisas sobre o grafeno. O Prêmio Nobel de Física de 2010 foi atribuído a Andre Geim e Konstantin Novoselov da Universidade de Manchester por experiências inovadoras em relação ao grafeno. (pt)
  • Графе́н (англ. graphene) — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp²-гибридизации и соединённых посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью и рекордно большой теплопроводностью (~1 ТПа и ~5·103 Вт·м−1·К−1 соответственно). Высокая подвижность носителей заряда (максимальная подвижность электронов среди всех известных материалов) делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах. Один из существующих в настоящее время способов получения графена в условиях научных лабораторий основан на механическом отщеплении или отшелушивании слоёв графита от высокоориентированного пиролитического графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другой известный способ — метод термического разложения подложки карбида кремния — гораздо ближе к промышленному производству. С 2010 года доступны листы графена метрового размера выращенные методом химического осаждения из газовой фазы. Из-за особенностей энергетического спектра носителей графен проявляет специфические, в отличие от других двумерных систем, электрофизические свойства. Впоследствии были получены аналогичные двумерные кристаллы кремния (силицен), фосфора (фосфорен), германия (германен). За «передовые опыты с двумерным материалом — графеном» А. К. Гейму и К. С. Новосёлову была присуждена Нобелевская премия по физике за 2010 год. В 2013 году Михаил Кацнельсон награждён премией Спинозы за разработку базовой концепции и понятий, которыми оперирует наука в области графена. (ru)
  • 石墨烯(Graphene)是一種由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯一直被認為是假設性的結構,無法單獨穩定存在,直至2004年,英国曼彻斯特大学物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地在實驗中從石墨中分離出石墨烯,而證實它可以單獨存在,兩人也因「在二维石墨烯材料的開創性實驗」為由,共同獲得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄卻也是最堅硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光";導熱系數高達5300 W/m·K,高於碳纳米管和金刚石,常溫下其電子遷移率超過15000 cm2/V·s,又比纳米碳管或矽晶體(monocrystalline silicon)高,而電阻率只約10-6 Ω·cm,比銅或銀更低,為目前世上電阻率最小的材料。因為它的電阻率極低,電子的移动速度極快,因此被期待可用來發展出更薄、導電速度更快的新一代電子元件或電晶體。由於石墨烯實質上是一種透明、良好的導體,也適合用來製造透明觸控螢幕、光板、甚至是太陽能電池。 石墨烯另一個特性,是能夠在常溫下觀察到量子霍爾效應。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 911833 (xsd:integer)
dbo:wikiPageRevisionID
  • 744466278 (xsd:integer)
dbp:e
  • -7 (xsd:integer)
  • -6 (xsd:integer)
  • 6 (xsd:integer)
  • 12 (xsd:integer)
dbp:u
  • m/s
  • cm2⋅W−1
  • cm−2
  • Ω⋅cm
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • グラフェン (graphene) とは、1原子の厚さのsp2結合炭素原子のシート。炭素原子とその結合からできた蜂の巣のような六角形格子構造をとっている。名称の由来はグラファイト (Graphite) と「ENE」から。グラファイト自体もグラフェンシートが多数積み重なってできている。 グラフェンの炭素間結合距離は約0.142 nm。炭素同素体(グラファイト、カーボンナノチューブ、フラーレンなど)の基本的な構造である。 (ja)
  • 石墨烯(Graphene)是一種由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯一直被認為是假設性的結構,無法單獨穩定存在,直至2004年,英国曼彻斯特大学物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地在實驗中從石墨中分離出石墨烯,而證實它可以單獨存在,兩人也因「在二维石墨烯材料的開創性實驗」為由,共同獲得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄卻也是最堅硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光";導熱系數高達5300 W/m·K,高於碳纳米管和金刚石,常溫下其電子遷移率超過15000 cm2/V·s,又比纳米碳管或矽晶體(monocrystalline silicon)高,而電阻率只約10-6 Ω·cm,比銅或銀更低,為目前世上電阻率最小的材料。因為它的電阻率極低,電子的移动速度極快,因此被期待可用來發展出更薄、導電速度更快的新一代電子元件或電晶體。由於石墨烯實質上是一種透明、良好的導體,也適合用來製造透明觸控螢幕、光板、甚至是太陽能電池。 石墨烯另一個特性,是能夠在常溫下觀察到量子霍爾效應。 (zh)
  • Graphene (/ˈɡræf.iːn/) is an allotrope of carbon in the form of a two-dimensional, atomic-scale, honey-comb lattice in which one atom forms each vertex. It is the basic structural element of other allotropes, including graphite, charcoal, carbon nanotubes and fullerenes. It can also be considered as an indefinitely large aromatic molecule, the ultimate case of the family of flat polycyclic aromatic hydrocarbons. The global market for graphene is reported to have reached $9 million by 2012 with most sales in the semiconductor, electronics, battery energy and composites industries. (en)
  • الغرافين مادة متآصلة من الكربون، ثنائية الأبعاد بنيتها البلورية سداسية (وتسمى أيضا قرص العسل أو سلك الدجاج). وهي أرفع مادة معروفة على الإطلاق حتى الآن، يعادل سمكها ذرة كربون واحدة فقط، ورغم ذلك تعتبر إحدى أقوى (أمتن) المواد المعروفة. تعتبر من موصلات الكهرباء وكفائتها ذات كفاءة النحاس، وهي أفضل موصل للحرارة على الإطلاق. وتكاد مادة الجرافين تكون شفافة تماما، ورغم ذلك فهي أيضا كثيفة للغاية لدرجة عدم سماحها بعبور أصغر ذرة (الهيليوم) من خلال هيكلها السداسي. (ar)
  • Graphen [gʁa'feːn] (Betonung auf der zweiten Silbe: Graphen; englisch graphene) ist die Bezeichnung für eine Modifikation des Kohlenstoffs mit zweidimensionaler Struktur, in der jedes Kohlenstoffatom im Winkel von 120° von drei weiteren umgeben ist, sodass sich ein bienenwabenförmiges Muster ausbildet. Da Kohlenstoff vierwertig ist, müssen dabei je „Wabe“ zwei Doppelbindungen auftreten, die jedoch nicht lokalisiert sind. Es handelt sich um eine Verkettung von Benzolringen, wie sie in aromatischen Verbindungen oft auftritt. Obwohl ein einzelner Benzolring in der Darstellungsweise der Valenzstrichformeln drei Doppelbindungen hat, haben zusammenhängende Benzolringe in dieser Darstellungsweise rein formal nur zwei Doppelbindungen pro Ring. Deshalb lässt sich die Struktur besser beschreiben, in (de)
  • El grafeno es una sustancia formada por carbono puro, con átomos dispuestos en patrón regular hexagonal, similar al grafito, pero en una hoja de un átomo de espesor. Se considera 100 veces más fuerte que el acero y su densidad es aproximadamente la misma que la de la fibra de carbono, y es aproximadamente cinco veces más ligero que el aluminio, una lámina de 1 metro cuadrado pesa tan solo 0,77 miligramos. El Premio Nobel de Física de 2010 se les otorgó a los científicos Andréy Gueim y Konstantín Novosiólov por sus revolucionarios descubrimientos acerca de este material. (es)
  • Le graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Bien que connu depuis de nombreuses années et théorisé dès 1947 par P.R. WALLACE, il n'a pu être extrait qu'en 2004 par Andre Geim, du département de physique de l'université de Manchester. Pour cette découverte, Andre Geim a reçu, avec Konstantin Novoselov, le prix Nobel de physique en 2010. Le graphène peut être produit de plusieurs manières, dont : Des recherches récentes montrent qu'il pourrait devenir un matériau idéal pour le stockage d'énergie. (fr)
  • Il grafene è un materiale costituito da uno strato monoatomico di atomi di carbonio (avente cioè uno spessore equivalente alle dimensioni di un solo atomo). Ha la resistenza meccanica del diamante e la flessibilità della plastica. (it)
  • Grafeen is een enkellaagsvlak van koolstofatomen. Het kan voorgesteld worden als een vlak bijenraat of kippengaas met de dikte van één atoom. Grafiet kan gezien worden als een opeenstapeling van lagen grafeen. De koolstofatomen in grafeen zijn alle sp2-gehybridiseerd. Grafeen is 200 keer beter bestand tegen breken dan staal, waardoor het voor zover bekend een van de sterkste materialen is. Grafeen is ook een van de snelste halfgeleiders (zo'n honderd keer sneller dan silicium). Hardwarefabrikanten doen onderzoek naar transistoren uit grafeen. (nl)
  • Grafen – płaska struktura złożona z atomów węgla, połączonych w sześciokąty. Materiał ten kształtem przypomina plaster miodu, a ponieważ ma jednoatomową grubość, w uproszczeniu określa się go mianem struktury dwuwymiarowej. Grafen jest przedmiotem zainteresowania przemysłu ze względu na różne właściwości, w tym elektryczne i mechaniczne. Za badania grafenu Andriej Gejm i Konstantin Nowosiołow z uniwersytetu w Manchesterze otrzymali w 2010 Nagrodę Nobla w dziedzinie fizyki. (pl)
  • O grafeno é uma das formas cristalinas do carbono, assim como o diamante, o grafite, os nanotubos de carbono e fulerenos. O grafeno de alta qualidade é muito forte, leve, quase transparente, um excelente condutor de calor e eletricidade. É o material mais forte já demonstrado, consistindo em uma folha plana de átomos de carbono densamente compactados em uma grade de duas dimensões. É um ingrediente para materiais de grafite de outras dimensões, como fulerenos 0D, nanotubos 1D ou grafite 3D. (pt)
  • Графе́н (англ. graphene) — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp²-гибридизации и соединённых посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью и рекордно большой теплопроводностью (~1 ТПа и ~5·103 Вт·м−1·К−1 соответственно). Высокая подвижность носителей заряда (максимальная подвижность электронов среди всех известных материалов) делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах. (ru)
rdfs:label
  • Graphene (en)
  • غرافين (ar)
  • Graphen (de)
  • Grafeno (es)
  • Graphène (fr)
  • Grafene (it)
  • グラフェン (ja)
  • Grafeen (nl)
  • Grafen (pl)
  • Grafeno (pt)
  • Графен (ru)
  • 石墨烯 (zh)
owl:differentFrom
owl:sameAs
skos:broadMatch
skos:closeMatch
skos:relatedMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:field of
is dbo:knownFor of
is dbo:product of
is dbo:wikiPageRedirects of
is owl:differentFrom of
is foaf:primaryTopic of