The equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev.

Property Value
dbo:abstract
  • The equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 32446743 (xsd:integer)
dbo:wikiPageRevisionID
  • 663181132 (xsd:integer)
dbp:date
  • 20110702221651 (xsd:double)
dbp:title
  • Notes on how to prove Chebyshev’s equioscillation theorem
dbp:url
  • http://www.math.uiowa.edu/~jeichhol/qual%20prep/Notes/cheb-equiosc-thm_2007.pdf
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • The equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev. (en)
rdfs:label
  • Equioscillation theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of