The derivative of a function of a real variable measures the sensitivity to change of a quantity (a function value or dependent variable) which is determined by another quantity (the independent variable). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time is advanced.

Property Value
dbo:abstract
  • The derivative of a function of a real variable measures the sensitivity to change of a quantity (a function value or dependent variable) which is determined by another quantity (the independent variable). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time is advanced. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives may be generalized to functions of several real variables. In this generalization, the derivative is reinterpreted as a linear transformation whose graph is (after an appropriate translation) the best linear approximation to the graph of the original function. The Jacobian matrix is the matrix that represents this linear transformation with respect to the basis given by the choice of independent and dependent variables. It can be calculated in terms of the partial derivatives with respect to the independent variables. For a real-valued function of several variables, the Jacobian matrix reduces to the gradient vector. The process of finding a derivative is called differentiation. The reverse process is called antidifferentiation. The fundamental theorem of calculus states that antidifferentiation is the same as integration. Differentiation and integration constitute the two fundamental operations in single-variable calculus. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) العدد المُشتَقّ في نقطة، على رسم بياني لدالة ذات متغيرات وقيم حقيقية، هو معامل المماس الموجِّهُ.يعبر التفاضل عن المعدل الذي تتغير به قيمة y نتيجة تغير قيمة x توجد بينهما علاقة رياضية أو دالة رياضية. وتعرف الدالة المشتقة بأنها ميل المماس لمنحنى {f(x عند أي نقطة بشرط وجود هذه المشتقة أو هي السرعة اللحظية أو معدل التغيير اللحظي للدالة.نستخدم الرمز Δ للدلالة على التغير في الكمية.ويكون معدل التغير هو نهاية نسبة تغير y إلى نسبة تغير x : عندما Δx تقارب 0. يمكن أن نكتب مشتق y بالنسبة ل x : (ترميز لايبنز) التعبير الدقيق عن مفهوم الاشتقاق يكون باستخدام مقادير لا متناهية في الصغر: (ar)
  • En matemática, la derivada de una función mide la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado. Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21. Entonces el valor de la derivada de una función en un punto puede interpretarse geométricamente, ya que se corresponde con la pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es a su vez la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial. (es)
  • En analyse, le nombre dérivé en un « point » (réel) x d'une fonction f à variable et valeurs réelles est le coefficient directeur de la tangente au graphe de f au point (x, f(x)). C'est le coefficient directeur de l'approximation affine de f en x ; ce nombre n'est donc défini que si cette tangente — ou cette approximation — existe. La dérivée d'une fonction f est une fonction qui, à tout nombre pour lequel f admet un nombre dérivé, associe ce nombre dérivé. La dérivée en un point d'une fonction de plusieurs variables réelles, ou à valeurs vectorielles (en), est plus couramment appelée différentielle de la fonction en ce point, et n'est pas traitée ici. La notion de nombre dérivé a vu le jour au XVIIe siècle dans les écrits de Leibniz et de Newton qui le nomme fluxion et qui le définit comme « le quotient ultime de deux accroissements évanescents ». La dérivée de la fonction est notée en mathématiques ou . On utilise aussi des notations spécifiques (surtout en physique) pour désigner la dérivée par rapport au temps qui s'écrit avec un point surmontant la lettre (), la dérivée seconde s'écrivant alors grâce à un tréma surmontant la lettre. Cette notation est appelée « notation de Newton ». On utilise dans le même esprit, les notations prime et seconde pour noter la dérivée par rapport à l'espace. La notion de dérivée est une notion fondamentale en analyse. Elle permet d'étudier les variations d'une fonction, de construire des tangentes à une courbe et de résoudre des problèmes d'optimisation. En sciences, lorsqu'une grandeur est fonction du temps, la dérivée de cette grandeur donne la vitesse instantanée de variation de cette grandeur, et la dérivée de la dérivée donne l'accélération. Par exemple, la vitesse instantanée d'un mobile est la valeur à cet instant de la dérivée de sa position par rapport au temps, et son accélération est la valeur à cet instant de la dérivée par rapport au temps, de sa vitesse. On généralise la notion de dérivée en étendant celle-ci au champ complexe et on parle alors de dérivée complexe. Pour une fonction de plusieurs variables réelles, on parle de la dérivée partielle par rapport à l'une de ses variables. Il existe aussi une définition purement algébrique de la dérivée. On en trouve un exemple dans l'article polynôme formel. (fr)
  • In matematica, la derivata è la misura di quanto la crescita di una funzione cambi al variare del suo argomento. La derivata di una funzione è una grandezza puntuale, cioè si calcola punto per punto. Nel caso di funzioni a una variabile nel campo reale, essa è la pendenza della tangente al grafico della funzione in quel punto e ne rappresenta la migliore approssimazione lineare. Nel caso in cui la derivata esista (cioè la funzione sia derivabile) in ogni punto del dominio, la si può vedere a sua volta come una funzione che associa a ogni punto proprio la derivata in quel punto. Il concetto di derivata è, insieme a quello di integrale, uno dei cardini dell'analisi matematica e del calcolo infinitesimale. Il significato pratico di derivata è il tasso di variazione di una certa grandezza presa in considerazione. Un esempio molto noto di derivata è la variazione della posizione di un oggetto rispetto al tempo, chiamata velocità istantanea. (it)
  • 数学における実変数函数の微分(びぶん)、微分係数、微分商または導函数(どうかんすう、英: derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分は実多変数函数にも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)を反微分という。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。 (ja)
  • In de wiskunde is de afgeleide (het differentiaalquotiënt) een maat voor de verandering die een functie ondergaat als de argumenten van deze functie een infinitesimaal kleine verandering ondergaan. In een functie met één reële variabele wordt de afgeleide in een punt gegeven door de helling van de raaklijn aan de grafiek van deze functie in dat punt. Het woord afgeleide is hier in feite een afgekorte term voor het begrip afgeleide waarde. Het is een waarde die afgeleid is van de oorspronkelijke functie. Het bepalen van de afgeleide van een functie heet differentiëren. Als de afgeleide van een functie f gedefinieerd is voor alle punten in het domein van f, wordt de daardoor bepaalde functie de afgeleide functie of kortweg de afgeleide genoemd. Het concept van de afgeleide van een functie werd in de 17e eeuw vrijwel tegelijkertijd door Isaac Newton en Gottfried Leibniz uitgevonden. (nl)
  • Pochodna – miara szybkości zmian wartości funkcji względem zmian jej argumentów. (pl)
  • No cálculo, a derivada em um ponto de uma função representa a taxa de variação instantânea de em relação a neste ponto. Um exemplo típico é a função velocidade que representa a taxa de variação (derivada) da função espaço. Do mesmo modo a função aceleração é a derivada da função velocidade. Geometricamente, a derivada no ponto de representa a inclinação da reta tangente ao gráfico desta função no ponto . A função que a cada ponto associa a derivada neste ponto de é chamada de função derivada de f(x). (pt)
  • Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием.Обратный процесс — нахождение первообразной — интегрирование. (ru)
  • 导数(英语:Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数 的自变量在一点 上产生一个增量 时,函數输出值的增量與自變量增量 的比值在 趋于0时的極限如果存在,即為 在 处的导数,记作 、 或 。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数 , 也是一个函数,称作 的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7921 (xsd:integer)
dbo:wikiPageRevisionID
  • 742265379 (xsd:integer)
dbp:about
  • yes
dbp:align
  • right
dbp:by
  • no
dbp:caption
  • Figure 4. Animated illustration: the tangent line as the limit of secants
  • Figure 1. The tangent line at
  • Figure 3. The tangent line as limit of secants
  • Figure 2. The secant to curve y= f determined by points and
dbp:direction
  • vertical
dbp:header
  • Rate of change as a limit value
dbp:id
  • Derivative
  • p/d031260
dbp:image
  • Derivative GIF.gif
  • Lim-secant.svg
  • Secant-calculus.svg
  • Tangent-calculus.svg
dbp:label
  • Derivative
dbp:onlinebooks
  • no
dbp:others
  • no
dbp:title
  • Derivative
dbp:width
  • 250 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • Pochodna – miara szybkości zmian wartości funkcji względem zmian jej argumentów. (pl)
  • No cálculo, a derivada em um ponto de uma função representa a taxa de variação instantânea de em relação a neste ponto. Um exemplo típico é a função velocidade que representa a taxa de variação (derivada) da função espaço. Do mesmo modo a função aceleração é a derivada da função velocidade. Geometricamente, a derivada no ponto de representa a inclinação da reta tangente ao gráfico desta função no ponto . A função que a cada ponto associa a derivada neste ponto de é chamada de função derivada de f(x). (pt)
  • Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием.Обратный процесс — нахождение первообразной — интегрирование. (ru)
  • 导数(英语:Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数 的自变量在一点 上产生一个增量 时,函數输出值的增量與自變量增量 的比值在 趋于0时的極限如果存在,即為 在 处的导数,记作 、 或 。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数 , 也是一个函数,称作 的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 (zh)
  • The derivative of a function of a real variable measures the sensitivity to change of a quantity (a function value or dependent variable) which is determined by another quantity (the independent variable). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time is advanced. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) العدد المُشتَقّ في نقطة، على رسم بياني لدالة ذات متغيرات وقيم حقيقية، هو معامل المماس الموجِّهُ.يعبر التفاضل عن المعدل الذي تتغير به قيمة y نتيجة تغير قيمة x توجد بينهما علاقة رياضية أو دالة رياضية. وتعرف الدالة المشتقة بأنها ميل المماس لمنحنى {f(x عند أي نقطة بشرط وجود هذه المشتقة أو هي السرعة اللحظية أو معدل التغيير اللحظي للدالة.نستخدم الرمز Δ للدلالة على التغير في الكمية.ويكون معدل التغير هو نهاية نسبة تغير y إلى نسبة تغير x : عندما Δx تقارب 0. (ar)
  • En matemática, la derivada de una función mide la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado. (es)
  • En analyse, le nombre dérivé en un « point » (réel) x d'une fonction f à variable et valeurs réelles est le coefficient directeur de la tangente au graphe de f au point (x, f(x)). C'est le coefficient directeur de l'approximation affine de f en x ; ce nombre n'est donc défini que si cette tangente — ou cette approximation — existe. La notion de nombre dérivé a vu le jour au XVIIe siècle dans les écrits de Leibniz et de Newton qui le nomme fluxion et qui le définit comme « le quotient ultime de deux accroissements évanescents ». La dérivée de la fonction est notée en mathématiques ou (fr)
  • In matematica, la derivata è la misura di quanto la crescita di una funzione cambi al variare del suo argomento. La derivata di una funzione è una grandezza puntuale, cioè si calcola punto per punto. Nel caso di funzioni a una variabile nel campo reale, essa è la pendenza della tangente al grafico della funzione in quel punto e ne rappresenta la migliore approssimazione lineare. Nel caso in cui la derivata esista (cioè la funzione sia derivabile) in ogni punto del dominio, la si può vedere a sua volta come una funzione che associa a ogni punto proprio la derivata in quel punto. (it)
  • 数学における実変数函数の微分(びぶん)、微分係数、微分商または導函数(どうかんすう、英: derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分は実多変数函数にも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 (ja)
  • In de wiskunde is de afgeleide (het differentiaalquotiënt) een maat voor de verandering die een functie ondergaat als de argumenten van deze functie een infinitesimaal kleine verandering ondergaan. In een functie met één reële variabele wordt de afgeleide in een punt gegeven door de helling van de raaklijn aan de grafiek van deze functie in dat punt. Het woord afgeleide is hier in feite een afgekorte term voor het begrip afgeleide waarde. Het is een waarde die afgeleid is van de oorspronkelijke functie. Het bepalen van de afgeleide van een functie heet differentiëren. (nl)
rdfs:label
  • Derivative (en)
  • مشتق (رياضيات) (ar)
  • Derivada (es)
  • Dérivée (fr)
  • Derivata (it)
  • 微分 (ja)
  • Afgeleide (nl)
  • Pochodna (pl)
  • Derivada (pt)
  • Производная функции (ru)
  • 导数 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:raceHorse of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is http://purl.org/linguistics/gold/hypernym of
is rdfs:seeAlso of
is foaf:primaryTopic of