In computer science and logic, a dependent type is a type whose definition depends on a value. A "pair of integers" is a type. A "pair of integers where the second is greater than the first" is a dependent type because of the dependence on the value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, Epigram and Idris, dependent types prevent bugs by allowing extremely expressive types.

Property Value
dbo:abstract
• In computer science and logic, a dependent type is a type whose definition depends on a value. A "pair of integers" is a type. A "pair of integers where the second is greater than the first" is a dependent type because of the dependence on the value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, Epigram and Idris, dependent types prevent bugs by allowing extremely expressive types. Two common examples of dependent types are dependent functions and dependent pairs. A dependent function's return type may depend on the value (not just type) of an argument. A function that takes a positive integer "n" may return an array of length "n". (Note that this is different from polymorphism and generic programming, both of which include the type as an argument.) A dependent pair may have a second value that depends on the first. It can be used to encode a pair of integers where the second one is greater than the first. Dependent types add complexity to a type system. Deciding the equality of dependent types in a program may require computations. If arbitrary values are allowed in dependent types, then deciding type equality may involve deciding whether two arbitrary programs produce the same result; hence type checking may become undecidable. (en)
dbo:wikiPageID
• 1949487 (xsd:integer)
dbo:wikiPageRevisionID
• 740493581 (xsd:integer)
dbp:id
• dependent+product
• dependent+product+type
• dependent+sum
• dependent+sum+type
• dependent+type
• dependent+type+theory
dbp:title
• dependent product
• dependent product type
• dependent sum
• dependent sum type
• dependent type
• dependent type theory
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
• In computer science and logic, a dependent type is a type whose definition depends on a value. A "pair of integers" is a type. A "pair of integers where the second is greater than the first" is a dependent type because of the dependence on the value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, Epigram and Idris, dependent types prevent bugs by allowing extremely expressive types. (en)
rdfs:label
• Dependent type (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of