Deoxyribonucleic acid (/diˈɒksiˌraɪboʊnjʊˌkliːɪk, -ˌkleɪɪk/; DNA) is a molecule that carries the genetic instructions used in the growth, development, functioning and reproduction of all known living organisms and many viruses. DNA and RNA are nucleic acids; alongside proteins, lipids and complex carbohydrates (polysaccharides), they are one of the four major types of macromolecules that are essential for all known forms of life. Most DNA molecules consist of two biopolymer strands coiled around each other to form a double helix.

Property Value
dbo:abstract
  • Deoxyribonucleic acid (/diˈɒksiˌraɪboʊnjʊˌkliːɪk, -ˌkleɪɪk/; DNA) is a molecule that carries the genetic instructions used in the growth, development, functioning and reproduction of all known living organisms and many viruses. DNA and RNA are nucleic acids; alongside proteins, lipids and complex carbohydrates (polysaccharides), they are one of the four major types of macromolecules that are essential for all known forms of life. Most DNA molecules consist of two biopolymer strands coiled around each other to form a double helix. The two DNA strands are termed polynucleotides since they are composed of simpler monomer units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases—either cytosine (C), guanine (G), adenine (A), or thymine (T)—and a sugar called deoxyribose and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together (according to base pairing rules (A with T, and C with G) with hydrogen bonds to make double-stranded DNA. The total amount of related DNA base pairs on Earth is estimated at 5.0 x 1037, and weighs 50 billion tonnes. In comparison, the total mass of the biosphere has been estimated to be as much as 4 trillion tons of carbon (TtC). DNA stores biological information. The DNA backbone is resistant to cleavage, and both strands of the double-stranded structure store the same biological information. This information is replicated as and when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding, meaning that these sections do not serve as patterns for protein sequences. The two strands of DNA run in opposite directions to each other and are thus antiparallel. Attached to each sugar is one of four types of nucleobases (informally, bases). It is the sequence of these four nucleobases along the backbone that encodes biological information. RNA strands are created using DNA strands as a template in a process called transcription. Under the genetic code, these RNA strands are translated to specify the sequence of amino acids within proteins in a process called translation. Within eukaryotic cells, DNA is organized into long structures called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes. Eukaryotic organisms (animals, plants, fungi, and protists) store most of their DNA inside the cell nucleus and some of their DNA in organelles, such as mitochondria or chloroplasts. In contrast, prokaryotes (bacteria and archaea) store their DNA only in the cytoplasm. Within the eukaryotic chromosomes, chromatin proteins such as histones compact and organize DNA. These compact structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed. DNA was first isolated by Friedrich Miescher in 1869. Its molecular structure was identified by James Watson and Francis Crick in 1953, whose model-building efforts were guided by X-ray diffraction data acquired by Rosalind Franklin. DNA is used by researchers as a molecular tool to explore physical laws and theories, such as the ergodic theorem and the theory of elasticity. The unique material properties of DNA have made it an attractive molecule for material scientists and engineers interested in micro- and nano-fabrication. Among notable advances in this field are DNA origami and DNA-based hybrid materials. (en)
  • الحمض الريبوزي النووي المنزوع الأوكسجين أو حمض الديوكسي ريبونيوكليك أو الحمض النووي الريبوزي منقوص الأكسجين أو الحمض النووي الصبغي أو كما يسمى في هذه المقالة دي أن إيه (DNA) بالإنجليزية، و الدِنا هو مجموعات كبيرة متكررة من الأحماض النووية تتشكل في هيئة سلسلتين طويلتين حلزونتين من الجزيئات وتربط بين السلسلتين أحماضا نووية مثل درجات السلم . الدي أن إيه هو العماد الأساسي للكائنات الحية ووجود حياة على الأرض . إذ أنه يمكن أن يكرر نفسه ، أي يصنع مثيلا له . وهو الذي يحتوي على التعليمات الجينية التي تصف التطور البيولوجي للكائنات الحية ومعظم الفيروسات ؛ كما أنه يحوي التعليمات الوراثية اللازمة لتكوين أعضاء الجنين سواء في الرحم أو البيضة أو النبات ، أي لكل الكائنات الحية. يعتبر وسيلة التخزين الطويل الأجل للمعلومات الوراثية وهي الوظيفة الأساسية لجزيئات الدي أن إيه بالإضافة إلى أنه يمكن من خلال هذه الجزيئات الحصول على المعلومات اللازمة لبناء البروتينات والحمض الريبي النووي (بالإنجليزية: RNA). تسمى قطع الدي أن إيه (DNA) التي تحمل معلومات وراثية يمكن ترجمتها لبروتينات بالمورثات أو الجينات. تتواجد بعض قطع الدي أن إيه لأغراض تركيبية وتنظيمية. كيميائياً؛ يتكون الدي أن إيه من سلسلتين من الجزيئات مرتبطتين ببعضهما البعض وتشكل اللولب المزدوج . هذه السلسلتان تمثلان ضلعي "سلم" ، وحداته البنائية تسمى النيوكليوتيدات. تتكون السلسلتان من سكر خماسي الكربون ريبوزي منقوص الأكسجين و مجموعة فوسفات . وتربط قواعد نتروجينية - وهي تمثل درجات السلم - بين السلسلتين ؛ القواعد النتروجينة هي : غوانين (G) و أدينين (A) و ثيمين (T) و سيتوزين (C). كل قاعدتين تشكل درجة من درجات "السلم" تربط الضلعين ببعضهما البعض . كل اثنين من تلك النيوكليوتيدات (القواعد النتروجينية) ترتبط مع بعضها البعض برابطة تساهمية ، ويتم الإرتباط بين جزيئات السكر والفوسفات بشكل متتابع لتكوين ما يعرف بهيكل سكر الفوسفات (الضلعين). بناء على قواعد الإرتباط، فإن كل سلسلة دي أن إيه تحتوي على قواعد نيتروجينية ترتبط ببعضها (الأدنين مع الثيامين و الجوانين مع السايتوسين) برابطة هيدروجينية مكونة بذلك الروابط العرضية للحلزون المزدوج (السلم). لكل من غوانين (G) و أدينين (A) و ثيمين (T) و سيتوزين (C) شكله الخاص . فشكل الأدينين (A) يرتبط ب ثيمين (T) ؛ و السيتوزين (C) يمكن أن يرتبط مباشرة ب غوانين (G) . وتسمى هذه "أزواج قواعد" Base pairs . ,ويمكن بناءا على ذلك تخيل أن جزيء الدي أن إيه عبارة عن سلم حلزوني تتكون فيه كل درجة من زوج قواعد واحد. زعلى هذا الأساس تكون هناك أربعة احتمالات للترابط وتكوين درجة للسلم T-A , A-T : C-G , G-C : فإذا حدث وأن أصاب أحد القواعد تلفا أو ضاع , فإن تعويضه يمكن أن يتم بسهولة عن طريق نصف الدرجة الباقي فلا يتم تعويض ثيمين T مثلا إلا بثيمين T . أي أن الحلوزن المزدوج في استطاعته تكوين نسخة منه ، حيث أن كل من الضلعين يمكن أن يكون قالبا لصناعة نسخة منه. فإذا قمت بقسم السلم إلى ضلعيه عبر الروابط بين أزواج القواعد بطول الدي أن إيه ، فإن كل من ضلعين يحوي المعلومات الكاملة لإعادة بناء نسخة من الأصل. بالتالي يمكن تصور أن الدي أن إيه عبارة عن مخطوطة ، أو برمجة سوفوير ، موجودة في نواة خلية . واللغة المكتوبة بها تتكون من أربعة حروف . الجملة المكونة من عدة كلمات منها تعرف بأنها جين. وكل جين يتكون من مئات أو آلاف الحروف . وجميع الوظائف التي تؤديها خلية - حتى لو كانت خلية بشرية معقدة مثلنا - فهي تنظم عملها وفقا لترتيب الشفرة المكتوبة بالحروف الأربعة في هذا المخطوط. يعطي تتابع القواعد النيتروجينية على طول هيكل سكر الفوسفات في جزيء الدي أن إيه شفرات codes يمكن من خلالها تحديد تتابع الأحماض الأمينية التي تكون البروتين . ويتم ذلك كما يلي: يتم نسخ جزيء آر أن إيه مقابلا لجزيء الدي أن إيه المحتوي على كود البروتين في عملية تسمي بعملية النسخ . ويتم ترجمة الرموز إلى أحماض أمينية مقابلة خلال عملية الترجمة لتعطي البروتين المقابل. ليس بالضرورة أن كامل الشفرة تتم ترجمتها إلى بروتين إذ أن بعض جزيئات الآر أن إيه تقوم بوظائف تركيبية أخرى مثل الريبوسومات وجسيمات التضفير. حجم الدي أن إيه داخل كل خلية ضخم فلذلك يرتبط ببروتين يسمى الهستون وهو مشحون بشحنة موجبة فيستطيع الإرتباط بالدي أن إيه ذو الشحنة السالبة فيكون تركيبات تسمى الكروموسومات، والكروموسومات في مجموعها تكون ما يعرف بالجينوم (المحتوى الجيني أو الصبغي للخلية). قبل أنقسام الخلية تتضاعف الصبغيات فيما يعرف بتضاعف الدي أن إيه ويتم ذلك في كل من بدائيات النوى وفي حقيقيات النواة. (ar)
  • Desoxyribonukleinsäure (Des|oxy|ri|bo|nu|kle|in|säu|re; kurz DNS; englisch DNA für deoxyribonucleic acid) (lat.-fr.-gr. Kunstwort) ist ein in allen Lebewesen und in bestimmten Virentypen (sogenannte DNA-Viren) vorkommendes Biomolekül und Träger der Erbinformation, also der Gene. Das Wort setzt sich zusammen aus des-, Oxygenium (Sauerstoff), Ribose (siehe Desoxyribose) und Nukleinsäure. Im Normalzustand ist DNA in Form einer Doppelhelix aufgebaut. Chemisch gesehen handelt es sich um Nukleinsäuren, lange Kettenmoleküle (Polymere), die aus vier verschiedenen Bausteinen, den Nukleotiden aufgebaut sind. Jedes Nukleotid besteht aus einem Phosphat-Rest, dem Zucker Desoxyribose und einer von vier organischen Basen (Adenin, Thymin, Guanin und Cytosin, oft abgekürzt mit A, T, G und C). Die Gene in der DNA enthalten die Information für die Herstellung der Ribonukleinsäuren (RNA, im Deutschen auch RNS). Eine wichtige Gruppe von RNA, die mRNA, enthält wiederum die Information für den Bau der Proteine (Eiweiße), welche für die biologische Entwicklung eines Lebewesens und den Stoffwechsel in der Zelle notwendig sind. Innerhalb der Protein-codierenden Gene legt die Abfolge der Basen die Abfolge der Aminosäuren des jeweiligen Proteins fest: Im genetischen Code stehen jeweils drei Basen für eine bestimmte Aminosäure. In den Zellen von Eukaryoten, zu denen auch Pflanzen, Tiere und Pilze gehören, ist der Großteil der DNA im Zellkern als Chromosomen organisiert, ein kleiner Teil befindet sich in den Mitochondrien – den „Kraftwerken“ – der Zellen. Pflanzen und Algen haben außerdem DNA in ihren Chloroplasten, den Photosynthese betreibenden Organellen. Bei Bakterien und Archaeen – den Prokaryoten, die keinen Zellkern besitzen – liegt die DNA im Cytoplasma. Manche Viren, die RNA-Viren, haben keine DNA, sondern RNA, um die genetische Information zu speichern. Im allgemeinen Sprachgebrauch wird die Desoxyribonukleinsäure überwiegend mit der englischen Abkürzung DNA bezeichnet; die parallel bestehende deutsche Abkürzung DNS wird hingegen seltener verwendet und ist laut Duden „veraltend“. (de)
  • El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética. Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando solo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno. Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGCATCG...), la ARN polimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que sería TAC-GAT-CTA-GCG-...) para transcribir una molécula de ARNm que se leería AUG-CUA-GAU-CGC-...; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-... Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones. Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (por ejemplo, animales, plantas y hongos) almacenan la mayor parte de su ADN dentro del núcleo celular y una mínima parte en elementos celulares llamados mitocondrias, y en los plastos y los centros organizadores de microtúbulos o centríolos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula y, por último, los virus ADN lo hacen en el interior de la cápside de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie. (es)
  • L'acide désoxyribonucléique, ou ADN, est une macromolécule biologique présente dans toutes les cellules ainsi que chez de nombreux virus. L'ADN contient toute l'information génétique, appelée génome, permettant le développement, le fonctionnement et la reproduction des êtres vivants. C'est un acide nucléique, au même titre que l'acide ribonucléique (ARN). Les acides nucléiques sont, avec les peptides et les glucides, l'une des trois grandes familles de biopolymères essentiels à toutes les formes de vie connues. Les molécules d'ADN des cellules vivantes sont formées de deux brins antiparallèles enroulés l'un autour de l'autre pour former une double hélice. On dit que l'ADN est bicaténaire, ou double brin. Chacun de ces brins est un polymère appelé polynucléotide. Chaque monomère qui le constitue est un nucléotide, lequel est formé d'une base nucléique, ou base azotée — adénine (A), cytosine (C), guanine (G) ou thymine (T) — liée à un ose — ici, le désoxyribose — lui-même lié à un groupe phosphate. Les nucléotides polymérisés sont unis les uns aux autres par des liaisons covalentes entre le désoxyribose d'un nucléotide et le groupe phosphate du nucléotide suivant, formant ainsi une chaîne où alternent oses et phosphates, avec des bases nucléiques liées chacune à un ose. L'ordre dans lequel se succèdent les nucléotides le long d'un brin d'ADN constitue la séquence de ce brin. C'est cette séquence qui porte l'information génétique. Celle-ci est structurée en gènes, qui sont exprimés à travers la transcription en ARN. Ces ARN peuvent être non codants — ARN de transfert et ARN ribosomique notamment — ou bien codants : il s'agit dans ce cas d'ARN messagers, qui sont traduits en protéines par des ribosomes. La succession des bases nucléiques sur l'ADN détermine la succession des acides aminés qui constituent les protéines issues de ces gènes. La correspondance entre bases nucléiques et acides aminés est le code génétique. L'ensemble des gènes d'un organisme constitue son génome. Les bases nucléiques d'un brin d'ADN peuvent interagir avec les bases nucléiques d'un autre brin d'ADN à travers des liaisons hydrogène, qui déterminent des règles d'appariement entre paires de bases : l'adénine et la thymine s'apparient au moyen de deux liaisons hydrogène, tandis que la guanine et la cytosine s'apparient au moyen de trois liaisons hydrogène. Normalement, l'adénine et la cytosine ne s'apparient pas, tout comme la guanine et la thymine. Lorsque les séquences des deux brins sont complémentaires, ces brins peuvent s'apparier en formant une structure bicaténaire hélicoïdale caractéristique qu'on appelle double hélice d'ADN. Cette double hélice est bien adaptée au stockage de l'information génétique : la chaîne oses-phosphates est résistante aux réactions de clivage ; de plus, l'information est dupliquée sur les deux brins de la double hélice, ce qui permet de réparer un brin endommagé à partir de l'autre brin resté intact ; enfin, cette information peut être copiée à travers un mécanisme appelé réplication de l'ADN au cours duquel une double hélice d'ADN est recopiée fidèlement en une autre double hélice portant la même information. C'est en particulier ce qu'il se passe lors de la division cellulaire : chaque molécule d'ADN de la cellule mère est répliquée en deux molécules d'ADN, chacune des deux cellules filles recevant ainsi un jeu complet de molécules d'ADN, chaque jeu étant identique à l'autre. Dans les cellules, l'ADN est organisé en structures appelées chromosomes. Ces chromosomes ont pour fonction de rendre l'ADN plus compact à l'aide de protéines, notamment d'histones, qui forment, avec les acides nucléiques, une substance appelée chromatine. Les chromosomes participent également à la régulation de l'expression génétique en déterminant quelles parties de l'ADN doivent être transcrites en ARN. Chez les eucaryotes (animaux, plantes, champignons et protistes), l'ADN est essentiellement contenu dans le noyau des cellules, avec une fraction d'ADN présent également dans les mitochondries ainsi que, chez les plantes, dans les chloroplastes. Chez les procaryotes (bactéries et archées), l'ADN est contenu dans le cytoplasme. Chez les virus qui contiennent de l'ADN, celui-ci est stocké dans la capside. Quel que soit l'organisme considéré, l'ADN est transmis au cours de la reproduction : il joue le rôle de support de l'hérédité. La modification de la séquence des bases d'un gène peut conduire à une mutation génétique, laquelle peut, selon les cas, être sans conséquence pour l'organisme ou, au contraire, être incompatible avec sa survie. À titre d'exemple, la modification d'une seule base d'un seul gène — celui de la β-globine, une sous-unité protéique de l'hémoglobine A — du génotype humain est responsable de la drépanocytose, une maladie génétique parmi les plus répandues dans le monde. (fr)
  • デオキシリボ核酸(デオキシリボかくさん、英: deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。 (ja)
  • Desoxyribonucleïnezuur, afgekort als DNA (Engels: Deoxyribonucleic acid), is een biochemisch macromolecuul dat fungeert als belangrijkste drager van erfelijke informatie in alle bekende organismen, inclusief virussen (met uitzondering van RNA-virussen). DNA behoort net zoals RNA tot de nucleïnezuren. Een DNA-molecuul bestaat uit twee lange strengen van nucleotiden, die in de vorm van een dubbele helix met elkaar vervlochten zijn. De twee strengen zijn met elkaar verbonden door zogenoemde baseparen, die steeds twee tegenover elkaar liggende nucleotiden verbinden. DNA bevat vier verschillende nucleotiden met de nucleobasen adenine, thymine, guanine en cytosine, die afgekort worden met respectievelijk de letters A, T, G en C. De beide strengen zijn complementair doordat de basen alleen in de paren AT en GC kunnen voorkomen. De volgorde van nucleotiden in een streng wordt een sequentie genoemd. Doordat er zeer veel sequenties mogelijk zijn, kan de volgorde van nucleotiden unieke erfelijke informatie verschaffen. Zoals met letters woorden, zinnen en boeken gemaakt kunnen worden, zo worden ook de letters van het DNA (de nucleotiden dus) gebruikt om allerlei erfelijke informatie te coderen. DNA bevindt zich in cellen in de vorm van chromosomen. Chromosomen kunnen miljoenen baseparen bevatten. Door middel van de replicatie wordt het DNA in een chromosoom gekopieerd. De replicatie gaat vooraf aan de celdeling. Zodoende krijgt elke cel een kopie van het DNA, en kan via de voortplanting het DNA doorgegeven worden aan het nageslacht. Op een chromosoom bevinden zich tientallen tot honderden genen. Een gen bestaat uit een of meer DNA-sequenties die coderen voor een of meer eiwitten. Eiwitten vervullen binnen en buiten de cel een zeer grote verscheidenheid aan biologische functies. In eukaryote organismen bevinden de chromosomen met het DNA zich in de celkern. Daarnaast is er ook DNA aanwezig als mitochondriaal DNA in de mitochondriën in de vorm van circulaire chromosomen, en bij planten daarnaast ook in plastiden (zoals bladgroenkorrels). Prokaryoten (zoals bacteriën en blauwalgen), die geen celkern of andere organellen hebben, bevatten eveneens circulaire chromosomen. Aan de hand van de genetische code kan de DNA-sequentie van een gen vertaald worden in de aminozuursequentie van een eiwit. Dit proces wordt eiwitexpressie genoemd. Bij de transcriptie wordt het DNA van een gen eerst gekopieerd naar mRNA, en het mRNA wordt vervolgens bij de translatie vertaald naar een eiwit. Bij de meeste organismen vormen de genen maar een klein gedeelte van de totale hoeveelheid DNA. Veel andere gedeelten van de chromosomen zijn betrokken bij de regulatie van de eiwitexpressie. Van veel van het overige DNA is de functie niet bekend. (nl)
  • L'acido desossiribonucleico o deossiribonucleico (DNA) è un acido nucleico che contiene le informazioni genetiche necessarie alla biosintesi di RNA e proteine, molecole indispensabili per lo sviluppo ed il corretto funzionamento della maggior parte degli organismi viventi. Dal punto di vista chimico, il DNA è un polimero organico costituito da monomeri chiamati nucleotidi (deossiribonucleotidi). Tutti i nucleotidi sono costituiti da tre componenti fondamentali: un gruppo fosfato, il deossiribosio (zucchero pentoso) e una base azotata che si lega al deossiribosio con legame N-glicosidico. Le basi azotate che possono essere utilizzate nella formazione dei nucleotidi da incorporare nella molecola di DNA sono quattro: adenina, guanina, citosina e timina mentre nell'RNA, al posto della timina, è presente l'uracile. Il DNA può essere più correttamente definito come una doppia catena polinucleotidica (A,T,C,G), antiparallela, orientata, complementare, spiralizzata, informazionale. L'ordine nella disposizione sequenziale dei nucleotidi costituisce l'informazione genetica, la quale è tradotta con il codice genetico negli amminoacidi corrispondenti. La sequenza amminoacidica prodotta, detta polipeptide, forma le proteine. Il processo di traduzione genetica (comunemente chiamata sintesi proteica) è possibile solo in presenza di una molecola intermedia di RNA, che è generata per complementarità con le quattro basi dei nucleotidi del DNA in un processo noto come trascrizione. Tale processo non genera solo filamenti di RNA destinati alla traduzione, ma anche frammenti già in grado di svolgere svariate funzioni biologiche (ad esempio all'interno dei ribosomi, dove l'RNA ha una funzione strutturale). L'informazione genetica è duplicata prima della divisione cellulare, attraverso un processo noto come replicazione del DNA, che evita la perdita di informazione nel passaggio tra diverse generazioni cellulari. Negli eucarioti, il DNA si complessa all'interno del nucleo in strutture chiamate cromosomi. Negli altri organismi, privi di nucleo, esso può essere organizzato in cromosomi o meno (nei batteri è presente un'unica molecola di DNA circolare a doppia catena, mentre i virus possono avere genomi a DNA oppure ad RNA). All'interno dei cromosomi, le proteine della cromatina come gli istoni, le coesine e le condensine, organizzano il DNA e lo avvolgono in strutture ordinate. Queste strutture guidano l'interazione tra il codice genetico e le proteine responsabili della trascrizione, contribuendo al controllo della trascrizione genica. (it)
  • Kwas deoksyrybonukleinowy, DNA (z ang. deoxyribonucleic acid), daw. kwas dezoksyrybonukleinowy – wielkocząsteczkowy organiczny związek chemiczny z grupy kwasów nukleinowych. U eukariontów zlokalizowany jest przede wszystkim w jądrach komórek, u prokariontów bezpośrednio w cytoplazmie, natomiast u wirusów w kapsydach. Pełni rolę nośnika informacji genetycznej organizmów żywych. (pl)
  • O ácido desoxirribonucleico (ADN, em português: ácido desoxirribonucleico; ou DNA, em inglês: deoxyribonucleic acid) é um composto orgânico cujas moléculas contêm as instruções genéticas que coordenam o desenvolvimento e funcionamento de todos os seres vivos e alguns vírus, e que transmitem as características hereditárias de cada ser vivo. O seu principal papel é armazenar as informações necessárias para a construção das proteínas de ARNs. Os segmentos de ADN que contêm a informação genética são denominados genes. O restante da sequência de ADN tem importância estrutural ou está envolvido na regulação do uso da informação genética. A estrutura da molécula de ADN foi descoberta conjuntamente pelo norte-americano James Watson e pelo britânico Francis Crick em 7 de Março de 1953, o que lhes valeu o Prêmio Nobel de Fisiologia ou Medicina em 1962, juntamente com Maurice Wilkins. Do ponto de vista químico, o ADN é um longo polímero de unidades simples (monômeros) de nucleotídeos, cuja cadeia principal é formada por moléculas de açúcares e fosfato intercalados unidos por ligações fosfodiéster. Ligada à molécula de açúcar está uma de quatro bases nitrogenadas. A sequência de bases ao longo da molécula de ADN constitui a informação genética. A leitura destas sequências é feita por intermédio do código genético, que especifica a sequência linear dos aminoácidos das proteínas. A tradução é feita por um RNA mensageiro que copia parte da cadeia de ADN por um processo chamado transcrição e posteriormente a informação contida neste é "traduzida" em proteínas pela tradução. Embora a maioria do ARN produzido seja usado na síntese de proteínas, algum ARN tem função estrutural, como por exemplo o ARN ribossômico, que faz parte da constituição dos ribossomos. Dentro da célula, o ADN pode ser observado numa estrutura chamada cromossoma durante a metáfase. O conjunto de cromossomas de uma célula forma o cariótipo. Antes da divisão celular os cromossomas são duplicados por meio de um processo chamado replicação. Eucariontes como animais, plantas, fungos e protozoários têm o seu ADN dentro do núcleo enquanto que procariontes como as bactérias o têm disperso no citoplasma. Dentro dos cromossomas, proteínas da cromatina como as histonas compactam e organizam o ADN. Estas estruturas compactas guiam as interacções entre o ADN e outras proteínas, ajudando a controlar que partes do ADN são transcritas. (pt)
  • Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков. В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов. С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии. В целом структура молекулы ДНК получила традиционное, но ошибочное название «двойной спирали», на самом же деле она является «двойным винтом». Винтовая линия может быть правой (A- и B- формы ДНК) или левой (Z-форма ДНК). В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам. Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 г. Розалинд Франклин, которая получила рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 г. от рака (Нобелевскую премию не дают посмертно). (ru)
  • 关于無深奧術語而通俗易懂的簡單介紹,请见「遺傳學入門」。「DNA」重定向至此。關於与此名称相似的其他条目,詳見「DNA (消歧义)」。 脱氧核醣核酸(英语:deoxyribonucleic acid,縮寫:DNA)又稱去氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7955 (xsd:integer)
dbo:wikiPageRevisionID
  • 744119662 (xsd:integer)
dbp:by
  • no
dbp:label
  • DNA
dbp:lcheading
  • DNA
dbp:onlinebooks
  • yes
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • デオキシリボ核酸(デオキシリボかくさん、英: deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。 (ja)
  • Kwas deoksyrybonukleinowy, DNA (z ang. deoxyribonucleic acid), daw. kwas dezoksyrybonukleinowy – wielkocząsteczkowy organiczny związek chemiczny z grupy kwasów nukleinowych. U eukariontów zlokalizowany jest przede wszystkim w jądrach komórek, u prokariontów bezpośrednio w cytoplazmie, natomiast u wirusów w kapsydach. Pełni rolę nośnika informacji genetycznej organizmów żywych. (pl)
  • Deoxyribonucleic acid (/diˈɒksiˌraɪboʊnjʊˌkliːɪk, -ˌkleɪɪk/; DNA) is a molecule that carries the genetic instructions used in the growth, development, functioning and reproduction of all known living organisms and many viruses. DNA and RNA are nucleic acids; alongside proteins, lipids and complex carbohydrates (polysaccharides), they are one of the four major types of macromolecules that are essential for all known forms of life. Most DNA molecules consist of two biopolymer strands coiled around each other to form a double helix. (en)
  • الحمض الريبوزي النووي المنزوع الأوكسجين أو حمض الديوكسي ريبونيوكليك أو الحمض النووي الريبوزي منقوص الأكسجين أو الحمض النووي الصبغي أو كما يسمى في هذه المقالة دي أن إيه (DNA) بالإنجليزية، و الدِنا هو مجموعات كبيرة متكررة من الأحماض النووية تتشكل في هيئة سلسلتين طويلتين حلزونتين من الجزيئات وتربط بين السلسلتين أحماضا نووية مثل درجات السلم . الدي أن إيه هو العماد الأساسي للكائنات الحية ووجود حياة على الأرض . إذ أنه يمكن أن يكرر نفسه ، أي يصنع مثيلا له . وهو الذي يحتوي على التعليمات الجينية التي تصف التطور البيولوجي للكائنات الحية ومعظم الفيروسات ؛ كما أنه يحوي التعليمات الوراثية اللازمة لتكوين أعضاء الجنين سواء في الرحم أو البيضة أو النبات ، أي لكل الكائنات الحية. (ar)
  • Desoxyribonukleinsäure (Des|oxy|ri|bo|nu|kle|in|säu|re; kurz DNS; englisch DNA für deoxyribonucleic acid) (lat.-fr.-gr. Kunstwort) ist ein in allen Lebewesen und in bestimmten Virentypen (sogenannte DNA-Viren) vorkommendes Biomolekül und Träger der Erbinformation, also der Gene. Das Wort setzt sich zusammen aus des-, Oxygenium (Sauerstoff), Ribose (siehe Desoxyribose) und Nukleinsäure. (de)
  • El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética. (es)
  • L'acide désoxyribonucléique, ou ADN, est une macromolécule biologique présente dans toutes les cellules ainsi que chez de nombreux virus. L'ADN contient toute l'information génétique, appelée génome, permettant le développement, le fonctionnement et la reproduction des êtres vivants. C'est un acide nucléique, au même titre que l'acide ribonucléique (ARN). Les acides nucléiques sont, avec les peptides et les glucides, l'une des trois grandes familles de biopolymères essentiels à toutes les formes de vie connues. (fr)
  • Desoxyribonucleïnezuur, afgekort als DNA (Engels: Deoxyribonucleic acid), is een biochemisch macromolecuul dat fungeert als belangrijkste drager van erfelijke informatie in alle bekende organismen, inclusief virussen (met uitzondering van RNA-virussen). DNA behoort net zoals RNA tot de nucleïnezuren. Een DNA-molecuul bestaat uit twee lange strengen van nucleotiden, die in de vorm van een dubbele helix met elkaar vervlochten zijn. De twee strengen zijn met elkaar verbonden door zogenoemde baseparen, die steeds twee tegenover elkaar liggende nucleotiden verbinden. DNA bevat vier verschillende nucleotiden met de nucleobasen adenine, thymine, guanine en cytosine, die afgekort worden met respectievelijk de letters A, T, G en C. De beide strengen zijn complementair doordat de basen alleen in de (nl)
  • L'acido desossiribonucleico o deossiribonucleico (DNA) è un acido nucleico che contiene le informazioni genetiche necessarie alla biosintesi di RNA e proteine, molecole indispensabili per lo sviluppo ed il corretto funzionamento della maggior parte degli organismi viventi. (it)
  • O ácido desoxirribonucleico (ADN, em português: ácido desoxirribonucleico; ou DNA, em inglês: deoxyribonucleic acid) é um composto orgânico cujas moléculas contêm as instruções genéticas que coordenam o desenvolvimento e funcionamento de todos os seres vivos e alguns vírus, e que transmitem as características hereditárias de cada ser vivo. O seu principal papel é armazenar as informações necessárias para a construção das proteínas de ARNs. Os segmentos de ADN que contêm a informação genética são denominados genes. O restante da sequência de ADN tem importância estrutural ou está envolvido na regulação do uso da informação genética. (pt)
  • Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков. (ru)
  • 关于無深奧術語而通俗易懂的簡單介紹,请见「遺傳學入門」。「DNA」重定向至此。關於与此名称相似的其他条目,詳見「DNA (消歧义)」。 脱氧核醣核酸(英语:deoxyribonucleic acid,縮寫:DNA)又稱去氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 (zh)
rdfs:label
  • DNA (en)
  • حمض نووي ريبوزي منقوص الأكسجين (ar)
  • Desoxyribonukleinsäure (de)
  • Ácido desoxirribonucleico (es)
  • Acide désoxyribonucléique (fr)
  • DNA (it)
  • デオキシリボ核酸 (ja)
  • Desoxyribonucleïnezuur (nl)
  • Kwas deoksyrybonukleinowy (pl)
  • Ácido desoxirribonucleico (pt)
  • Дезоксирибонуклеиновая кислота (ru)
  • 脱氧核糖核酸 (zh)
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:depiction
foaf:homepage
foaf:isPrimaryTopicOf
is dbo:agency of
is dbo:associatedBand of
is dbo:associatedMusicalArtist of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:cableServ of
is dbp:extra of
is http://purl.org/linguistics/gold/hypernym of
is foaf:primaryTopic of