In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object such as a surface deviates from being a flat plane, or a curve from being straight as in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space (usually a Euclidean space) – in a way that relates to the radius of curvature of circles that touch the object –, and intrinsic curvature, which is defined at each point in a Riemannian manifold. This article deals primarily with the first concept.

Property Value
dbo:abstract
• In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object such as a surface deviates from being a flat plane, or a curve from being straight as in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space (usually a Euclidean space) – in a way that relates to the radius of curvature of circles that touch the object –, and intrinsic curvature, which is defined at each point in a Riemannian manifold. This article deals primarily with the first concept. The canonical example of extrinsic curvature is that of a circle, which has a curvature equal to the reciprocal of its radius everywhere. Smaller circles bend more sharply, and hence have higher curvature. The curvature of a smooth curve is defined as the curvature of its osculating circle at each point. More commonly curvature is a scalar quantity, but one may also define a curvature vector that takes into account the direction of the bend as well as its sharpness. The curvature of more complex objects (such as surfaces or even curved n-dimensional spaces) is described by more complex objects from linear algebra, such as the general Riemann curvature tensor. The remainder of this article discusses, from a mathematical perspective, some geometric examples of curvature: the curvature of a curve embedded in a plane and the curvature of a surface in Euclidean space.See the links below for further reading. (en)
dbo:thumbnail
dbo:wikiPageID
• 60770 (xsd:integer)
dbo:wikiPageRevisionID
• 727716270 (xsd:integer)
dbp:direction
• vertical
dbp:first
• D.D.
dbp:footer
• Animations of the signed curvature and the acceleration vector
dbp:id
• Curvature
dbp:image
• Lemniscate_nebeneinander_animated.gif
• Lissajous-Curve_nebeneinander_animated.gif
dbp:last
• Sokolov
dbp:oldid
• 12026 (xsd:integer)
dbp:title
• Curvature
dbp:width
• 260 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
• In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object such as a surface deviates from being a flat plane, or a curve from being straight as in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space (usually a Euclidean space) – in a way that relates to the radius of curvature of circles that touch the object –, and intrinsic curvature, which is defined at each point in a Riemannian manifold. This article deals primarily with the first concept. (en)
rdfs:label
• Curvature (en)
rdfs:seeAlso
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is http://purl.org/linguistics/gold/hypernym of
is foaf:primaryTopic of