In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object such as a surface deviates from being a flat plane, or a curve from being straight as in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space (usually a Euclidean space) – in a way that relates to the radius of curvature of circles that touch the object –, and intrinsic curvature, which is defined at each point in a Riemannian manifold. This article deals primarily with the first concept.

Property Value
dbo:abstract
  • In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object such as a surface deviates from being a flat plane, or a curve from being straight as in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space (usually a Euclidean space) – in a way that relates to the radius of curvature of circles that touch the object –, and intrinsic curvature, which is defined at each point in a Riemannian manifold. This article deals primarily with the first concept. The canonical example of extrinsic curvature is that of a circle, which has a curvature equal to the reciprocal of its radius everywhere. Smaller circles bend more sharply, and hence have higher curvature. The curvature of a smooth curve is defined as the curvature of its osculating circle at each point. More commonly curvature is a scalar quantity, but one may also define a curvature vector that takes into account the direction of the bend as well as its sharpness. The curvature of more complex objects (such as surfaces or even curved n-dimensional spaces) is described by more complex objects from linear algebra, such as the general Riemann curvature tensor. The remainder of this article discusses, from a mathematical perspective, some geometric examples of curvature: the curvature of a curve embedded in a plane and the curvature of a surface in Euclidean space.See the links below for further reading. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) يشير مصطلح الانحناء في الرياضيات إلى المقدار الذي ينحرف به الشكل الهندسي عن حالة التسطح (شكل المستوي). هناك فرق أساسي بين الانحناء اللاجوهري (بالإنجليزية: extrinsic curvature) الذي يعرف على الأجسام ضمن الفضاءات (مثلاً:فضاء إقليدي) بحيث يتم تعريف نصف قطر الانحناء للدوائر التي تمس الجسم عند مختلف نقاطه، وبين الانحناء الجوهري (بالإنجليزية: intrinsic curvature) الذي يعرف لكل نقطة في متعدد شعب تفاضلي. بشكل بسيط يعرف انحناء دائرة على أنه مقلوب نصف قطرها ويكون الانحناء متساوياً في جميع نقاط الدائرة الواحدة (بديهياً بسبب تساوي قيمة نصف القطر في جميع النقاط). وعليه تكون قيمة الانحناء للدوائر الصغيرة أكبر منها في الدوائر الكبيرة. أما بشكل عام فتعطى قيمة الانحناء عند نقطة من منحني ما على أنها انحناء دائرة التقبيل للمنحني في تلك النقطة. يتم التعبير عن الانحناء في المستوي على أنه قيمة سلمية، بينما في الفضاء الثلاثي الأبعاد أو الفضاءات ذات الأبعاد الأعلى فتأخذ على أنها قيمة اتجاهية يسمى متجه الانحناء والذي يأخذ بعين الاعتبار اتجاه الانحناء بالإضافة إلى حدته. يتم وصف الانحناء للأجسام المعقدة (مثل السطوح في الفضاءات من الدرجة n) باستخدام طرق من الجبر الخطي، كطريقة تنسور الانحناء الريمني. (ar)
  • Krümmung ist ein Begriff aus der Mathematik, der in seiner einfachsten Bedeutung die lokale Abweichung einer Kurve von einer Geraden bezeichnet. Der gleiche Begriff steht auch für das Krümmungsmaß, welches für jeden Punkt der Kurve quantitativ angibt, wie stark diese lokale Abweichung ist. Aufbauend auf dem Krümmungsbegriff für Kurven lässt sich die Krümmung einer Fläche im dreidimensionalen Raum beschreiben, indem man die Krümmung von Kurven in dieser Fläche untersucht. Ein gewisser Teil der Krümmungsinformation einer Fläche, die gaußsche Krümmung, hängt nur von der inneren Geometrie der Fläche ab, d. h. von der ersten Fundamentalform (bzw. dem metrischem Tensor), die festlegt, wie die Bogenlänge von Kurven berechnet wird. Dieser intrinsische Krümmungsbegriff lässt sich verallgemeinern auf Mannigfaltigkeiten beliebiger Dimension mit einem metrischen Tensor. Auf solchen Mannigfaltigkeiten ist der Paralleltransport längs Kurven erklärt und die Krümmungsgrößen geben an, wie groß die Richtungsänderung von Vektoren beim Paralleltransport längs geschlossener Kurven nach einem Umlauf ist. Eine Anwendung ist die Allgemeine Relativitätstheorie, welche Gravitation als eine Krümmung der Raumzeit beschreibt. Noch allgemeiner lässt sich dieser Begriff auf Hauptfaserbündel mit Zusammenhang übertragen. Diese finden Anwendung in der Eichtheorie, in welcher die Krümmungsgrößen die Stärke der fundamentalen Wechselwirkungen (z. B. des elektromagnetischen Feldes) beschreiben. (de)
  • En matemáticas, la curvatura se refiere a cualquiera de una serie de conceptos vagamente relacionados en las diferentes áreas de la geometría. Normalmente se refiere a un concepto métrico de objetos matemáticos o geométricos. Por extensión también se usa el término para referirse a un número u objeto matemático que caracteriza la forma y magnitud de la curvatura. Más específicamente el término curvatura puede referirse a alguno de estos conceptos: * Geometría diferencial de curvas: * Geometría diferencial de curvas para curvas. * Radio de curvatura * Geometría diferencial general: * Geometría diferencial de superficies para superficies. * Tensor de curvatura * 2-forma de curvatura. * Física: * Curvatura del espacio-tiempo. (es)
  • Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : * dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle, et un cercle un objet de courbure constante positive ; * dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère un objet à deux dimensions de courbure constante positive. Une « selle de cheval » possède au contraire un point de courbure négative. Cette notion intuitive de courbure se précise et admet une généralisation à des espaces de dimensions quelconques dans le cadre de la géométrie riemannienne. Comme l'a montré Gauss pour le cas des surfaces (theorema egregium), il est très remarquable que la courbure d'un objet géométrique puisse être décrite de façon intrinsèque, c’est-à-dire sans référence aucune à un « espace de plongement » dans lequel se situerait l'objet considéré. Par exemple, le fait qu'une sphère ordinaire soit une surface à courbure positive constante est complètement indépendant du fait que nous voyons habituellement cette sphère comme étant plongée dans notre espace euclidien à trois dimensions. La courbure de cette sphère pourrait très bien être mesurée par des êtres intelligents bidimensionnels vivant sur la sphère (sortes de « fourmis bidimensionnelles »), à partir de mesures de longueurs et d'angles effectuées sur la sphère. La légende veut que Gauss se soit interrogé sur ces questions en étant confronté aux difficultés de cartographie de la Terre. (fr)
  • Il termine curvatura indica una serie di concetti geometrici legati fra di loro, che intuitivamente si riferiscono alla misura di quanto un determinato oggetto si discosti dall'essere piatto. La misura della curvatura viene definita in modi diversi a seconda dell'ente geometrico cui è applicata. La nozione di curvatura è alla base della geometria differenziale. Ha notevoli applicazioni in fisica, in particolare nella relatività generale. (it)
  • 曲率(きょくりつ、英語:curvature)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。 (ja)
  • In de meetkunde, een deelgebied van de wiskunde, wordt de term kromming gebruikt voor een aantal losjes aan elkaar gerelateerde concepten die in verschillende deelgebieden van de meetkunde worden gebruikt. Intuïtief gesproken is kromming de mate, waarin een meetkundig object afwijkt van platheid of in het geval van een lijn van of rechtheid, maar dit wordt afhankelijk van de context op verschillende manieren gedefinieerd . Er bestaat een belangrijk onderscheid tussen extrinsieke kromming, wat voor objecten die zijn ingebed in een andere ruimte (meestal een Euclidische ruimte) op een manier wordt gedefinieerd die verband houdt met de kromtestraal van cirkels die raken aan het object, en intrinsieke kromming, die op elk punt in een differentiaalvariëteit is gedefinieerd. Het oervoorbeeld van extrinsieke kromming is dat van een cirkel, die een kromming heeft die overal gelijk is aan de inverse van haar straal. Kleinere cirkels hebben scherpere bochten en dus een grotere kromming. De kromming van een gladde kromme wordt op elk punt gedefinieerd als de kromming van haar kromtestraal. In een vlak, dat wil zeggen een scalaire kwantiteit, maar dan in drie of meer dimensies, wordt het vlak beschreven door een krommingsvector, die niet alleen rekening houdt met de richting van de kromming, maar ook met de scherpte van de bocht. De kromming van meer complexe objecten (zoals oppervlakken of zelfs gekromde n-dimensionale ruimten) wordt beschreven door meer complexe objecten uit de lineaire algebra, zoals de algemene Riemann-krommingstensor. (nl)
  • Em matemática, uma curvatura é qualquer um de uma série de conceitos vagamente relacionadas em diferentes áreas da geometria. Intuitivamente, curvatura é a quantidade na qual um objeto geométrico se desvia do plano, ou reto no caso de uma linha, mas esta é definida de diferentes formas, dependendo do contexto. Há uma diferença fundamental entre a curvatura extrínseca, que é definida para objetos incorporados em outro espaço (geralmente um espaço euclidiano) de um modo que se relaciona com o raio de curvatura de círculos que tocam o objeto, e curvatura intrínseca, que é definida em cada ponto de uma variedade de Riemann. Este artigo lida principalmente com o primeiro conceito. O exemplo clássico de curvatura extrínseca é a de um círculo, que em todos os lugares tem curvatura igual ao inverso do seu raio. Círculos menores dobram-se mais acentuadamente, e, portanto, têm maior curvatura. A curvatura de uma curva suave é definida como a curvatura do seu círculo osculador em cada ponto. Mais vulgarmente isto é uma quantidade escalar, mas pode-se também definir um vetor de curvatura que leva em conta a direção da dobra, bem como a sua nitidez. A curvatura de objetos mais complexos (tais como superfícies ou até mesmo curvas n-dimensionais de espaços) é descrita por mais objetos complexos de álgebra linear, tais como o tensor de curvatura geral de Riemann. O restante deste artigo discute, a partir de uma perspectiva matemática, alguns exemplos geométricas de curvatura: a curvatura de uma curva incorporada num plano e que a curvatura de uma superfície no espaço euclidiano. Veja os links abaixo para ler mais. (pt)
  • Krzywiznę krzywej płaskiej definiuje się jako: Natomiast krzywiznę ze znakiem: gdzie jest kątem pomiędzy stycznymi do krzywej na końcach łuku, a długością tego łuku. Krzywizna okręgu jest w każdym punkcie jednakowa i równa odwrotności jego promienia. Wzory na krzywiznę w punkcie są następujące: * Dla krzywej określonej funkcją w układzie kartezjańskim: * Dla krzywej określonej parametrycznie w układzie kartezjańskim: * Dla krzywej określonej funkcją w układzie biegunowym: Promieniem krzywizny krzywej w danym punkcie P nazywamy odwrotność jej krzywizny w tym punkcie, obliczonym jednym ze wzorów podanych powyżej: Środkiem krzywizny krzywej w danym punkcie nazywamy punkt , leżący na normalnej do krzywej w punkcie P po stronie jej wklęsłości w odległości od P równej promieniowi krzywizny. Wzory na współrzędne środka krzywizny w punkcie P krzywej są następujące: * Dla krzywej o równaniu : * Dla krzywej o równaniach : (pl)
  • Кривизна́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.). Обычно кривизна определяется для каждой точки на «объекте» и выражается как значение некоторого дифференциального выражения 2-го порядка. Иногда кривизна определяется в интегральном смысле, например, как мера, такие определения используют для «объектов» пониженной гладкости. Как правило, тождественное обращение в нуль кривизны во всех точках влечёт локальное совпадение изучаемого «объекта» с «плоским» объектом. В этой статье приводятся только несколько простейших примеров определений понятия кривизны. (ru)
  • 曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 60770 (xsd:integer)
dbo:wikiPageRevisionID
  • 727716270 (xsd:integer)
dbp:direction
  • vertical
dbp:first
  • D.D.
dbp:footer
  • Animations of the signed curvature and the acceleration vector
dbp:id
  • Curvature
dbp:image
  • Lemniscate_nebeneinander_animated.gif
  • Lissajous-Curve_nebeneinander_animated.gif
dbp:last
  • Sokolov
dbp:oldid
  • 12026 (xsd:integer)
dbp:title
  • Curvature
dbp:width
  • 260 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • Il termine curvatura indica una serie di concetti geometrici legati fra di loro, che intuitivamente si riferiscono alla misura di quanto un determinato oggetto si discosti dall'essere piatto. La misura della curvatura viene definita in modi diversi a seconda dell'ente geometrico cui è applicata. La nozione di curvatura è alla base della geometria differenziale. Ha notevoli applicazioni in fisica, in particolare nella relatività generale. (it)
  • 曲率(きょくりつ、英語:curvature)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。 (ja)
  • 曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。 (zh)
  • In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object such as a surface deviates from being a flat plane, or a curve from being straight as in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space (usually a Euclidean space) – in a way that relates to the radius of curvature of circles that touch the object –, and intrinsic curvature, which is defined at each point in a Riemannian manifold. This article deals primarily with the first concept. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) يشير مصطلح الانحناء في الرياضيات إلى المقدار الذي ينحرف به الشكل الهندسي عن حالة التسطح (شكل المستوي). هناك فرق أساسي بين الانحناء اللاجوهري (بالإنجليزية: extrinsic curvature) الذي يعرف على الأجسام ضمن الفضاءات (مثلاً:فضاء إقليدي) بحيث يتم تعريف نصف قطر الانحناء للدوائر التي تمس الجسم عند مختلف نقاطه، وبين الانحناء الجوهري (بالإنجليزية: intrinsic curvature) الذي يعرف لكل نقطة في متعدد شعب تفاضلي. (ar)
  • Krümmung ist ein Begriff aus der Mathematik, der in seiner einfachsten Bedeutung die lokale Abweichung einer Kurve von einer Geraden bezeichnet. Der gleiche Begriff steht auch für das Krümmungsmaß, welches für jeden Punkt der Kurve quantitativ angibt, wie stark diese lokale Abweichung ist. (de)
  • En matemáticas, la curvatura se refiere a cualquiera de una serie de conceptos vagamente relacionados en las diferentes áreas de la geometría. Normalmente se refiere a un concepto métrico de objetos matemáticos o geométricos. Por extensión también se usa el término para referirse a un número u objeto matemático que caracteriza la forma y magnitud de la curvatura. Más específicamente el término curvatura puede referirse a alguno de estos conceptos: (es)
  • Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : * dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle, et un cercle un objet de courbure constante positive ; * dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère un objet à deux dimensions de courbure constante positive. Une « selle de cheval » possède au contraire un point de courbure négative. (fr)
  • In de meetkunde, een deelgebied van de wiskunde, wordt de term kromming gebruikt voor een aantal losjes aan elkaar gerelateerde concepten die in verschillende deelgebieden van de meetkunde worden gebruikt. Intuïtief gesproken is kromming de mate, waarin een meetkundig object afwijkt van platheid of in het geval van een lijn van of rechtheid, maar dit wordt afhankelijk van de context op verschillende manieren gedefinieerd . Er bestaat een belangrijk onderscheid tussen extrinsieke kromming, wat voor objecten die zijn ingebed in een andere ruimte (meestal een Euclidische ruimte) op een manier wordt gedefinieerd die verband houdt met de kromtestraal van cirkels die raken aan het object, en intrinsieke kromming, die op elk punt in een differentiaalvariëteit is gedefinieerd. (nl)
  • Krzywiznę krzywej płaskiej definiuje się jako: Natomiast krzywiznę ze znakiem: gdzie jest kątem pomiędzy stycznymi do krzywej na końcach łuku, a długością tego łuku. Krzywizna okręgu jest w każdym punkcie jednakowa i równa odwrotności jego promienia. Wzory na krzywiznę w punkcie są następujące: * Dla krzywej określonej funkcją w układzie kartezjańskim: * Dla krzywej określonej parametrycznie w układzie kartezjańskim: * Dla krzywej określonej funkcją w układzie biegunowym: Środkiem krzywizny krzywej w danym punkcie nazywamy punkt Wzory na współrzędne środka krzywizny w punkcie P krzywej są następujące: : : (pl)
  • Em matemática, uma curvatura é qualquer um de uma série de conceitos vagamente relacionadas em diferentes áreas da geometria. Intuitivamente, curvatura é a quantidade na qual um objeto geométrico se desvia do plano, ou reto no caso de uma linha, mas esta é definida de diferentes formas, dependendo do contexto. Há uma diferença fundamental entre a curvatura extrínseca, que é definida para objetos incorporados em outro espaço (geralmente um espaço euclidiano) de um modo que se relaciona com o raio de curvatura de círculos que tocam o objeto, e curvatura intrínseca, que é definida em cada ponto de uma variedade de Riemann. Este artigo lida principalmente com o primeiro conceito. (pt)
  • Кривизна́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.). В этой статье приводятся только несколько простейших примеров определений понятия кривизны. (ru)
rdfs:label
  • Curvature (en)
  • انحناء (رياضيات) (ar)
  • Krümmung (de)
  • Curvatura (es)
  • Courbure (fr)
  • Curvatura (it)
  • 曲率 (ja)
  • Kromming (meetkunde) (nl)
  • Krzywizna krzywej (pl)
  • Curvatura (pt)
  • Кривизна (ru)
  • 曲率 (zh)
rdfs:seeAlso
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is http://purl.org/linguistics/gold/hypernym of
is foaf:primaryTopic of