A cross-figure (also variously called cross number puzzle or figure logic) is a puzzle similar to a crossword in structure, but with entries which consist of numbers rather than words, with individual digits being entered in the blank cells. The numbers can be clued in various ways:

Property Value
dbo:abstract
  • Ein Kreuzzahlrätsel ist ein Rätsel, das ein Schema aus Kästchen wie ein Kreuzworträtsel hat, in das aber statt Wörtern Zahlen einzutragen sind. Für diese Zahlen werden analog wie beim Kreuzworträtsel Bedingungen angegeben, meist arithmetische; so könnte etwa die Bedingung für eine zu findende 36 auf „ist Quadratzahl“ lauten. Öfter als bei Kreuzworträtseln formuliert die Bedingung an eine Zahl auch einen Zusammenhang mit einer oder mehreren der anderen Zahlen im Schema, z.B.: „ist Summe von A waagerecht und B senkrecht“. Kreuzzahlrätsel sind schwierig, indem die gesuchten Zahlen in der Regel nicht auf einen Schlag eingetragen werden können; vielmehr muss man durch Verwendung von schon Bekanntem und von Angaben zu anderen, querlaufenden oder anderswie eingehenden Zahlen stückweise Wissen über einzelne Ziffern ansammeln und weiterverwenden, bis dann irgendwo der Inhalt eines Kästchens feststeht und eingetragen werden kann. Im Beispiel der gesuchten Quadratzahl 36 von oben könnte man beispielsweise aus anderen Angaben oder Überlegungen schon wissen, dass die erste Ziffer 1, 2 oder 3 ist; damit ist dann die letzte auf 5 oder 6 eingeschränkt, da als Quadratzahlen nun nur noch 16, 25 oder 36 infrage kommen. Ist für die erste nur mehr 1 oder 3 möglich, steht die 6 als Wert der letzten definitiv schon fest und kann eingetragen werden, obwohl noch nicht alle Ziffern der hier gesuchten Quadratzahl bestimmt sind. Vorteilhaft ist es oft, nach möglichst stark einschränkenden Bedingungen Ausschau zu halten. Bei zwei einzutragenden Zahlen gleicher Ziffernlänge ist beispielsweise eine mit Bedingung „ist Biquadrat“ (also Quadrat eines Quadrates) ohne Vorwissen stärker eingeschränkt als eine mit Bedingung „ist Quadratzahl“; den es gibt hier 100 Quadrate mit vier Ziffern, nämlich 0*0 = 0000, 1*1 = 0001, … 99*99 = 9801, jedoch nur 10 Biquadrate mit vier Ziffern, nämlich 0*0*0*0 = 0000, 1*1*1*1 = 0001, … 9*9*9*9 = 6561, und dazu sind bei der Biquadratbedingung auch die Möglichkeiten an den einzelnen Stellen stärker eingeengt: An erster Stelle beim Quadrat kann jede Ziffer stehen, beim Biquadrat dagegen nur 0, 1, 2, 4, 6. Weniger Fälle für eine Einzelzahl führen in der Tendenz zu weniger Fällen für ein Einzelkästchen. Das Lösen harter Kreuzzahlrätsel ist oft kaum möglich, ohne dass der Löser Nebenrechnungen auf Papier anstellt oder sich sogar zur Gedächtnisstütze Hilfstabellen für mögliche Einträge oder Eintrags-Kombinationen anlegt und später ggf. aktualisiert. Ohne Notate schwierig und fehlerträchtig ist auch das Verfolgen von Hypothesen über längere Schlussketten, mit deren Widerlegung man etwa in einem bestimmten Kästchen einen Teil der noch möglichen Ziffern ausschließen kann. Wegen des Aufwandes kommt es gerade hier darauf an, sich eng auf das Aussichtsreiche zu beschränken und sich nicht auf Exhaustion einzulassen, wo andere Wege müheloser Teilergebnisse liefern. Geschicktes Lösen stützt sich vor allem darauf, zu erkennen, welche der Angaben einen schnell weiterverwendbaren Ertrag liefern, insbesondere aber, welche unter Verwendung des inzwischen schon erworbenen Teilwissens nun „reif“ sein mögen, eine weitere Ziffer definitiv festzulegen. Damit kann der Löser mühselige Fallunterscheidungen und schriftliche Hilfstabellen vermeiden, die auf ungeschickterem Wege unumgänglich würden. Auf diese Weise können Kreuzzahlrätsel auch automatisch von einem Computer gelöst werden. Typische Bedingungen in den Definitionen sind etwa: * „ist gerade“ * „ist Quadratzahl“ * „ist Primzahl“ * „ist Palindrom“ * „die dieselbe Zahl wie …“ * „die Quersumme ist …“ * „ist Quadratzahl von …“ * „ist Produkt aus … und …“ * „ist Vielfaches von …“ * „jede folgende Ziffer ist kleiner als die vorangehende“ Die Forderung, dass eine Zahl Primzahl sein muss, erlaubt zum Beispiel für sie nur die Endziffern 1,2,3,5,7,9; bei zwei- oder mehrstelligen Primzahlen und Verbot der 0 sogar nur die Endziffern 1,3,7,9. Jedes Quadrat hat als Endziffer 0, 1, 4, 5, 6 oder 9. Ist ausgesagt, dass eine vierstellige Zahl Quadrat einer zweistelligen ist, und weiß man außerdem schon, dass die vierstellige keine führende 0 hat, so kann die Anfangsziffer der zweistelligen nicht kleiner als 3 sein, weil 1024 = 32 * 32 das erste Quadrat größer als 0999 ist. Usw. Zu gut gestellten Kreuzzahlrätsel gibt es genau eine Lösung, die mit allen Vorgaben zusammengeht. Die Null kommt in solchen Rätseln in der Regel nicht vor; oft wird das stillschweigend vorausgesetzt, was dann dem Löser erst klar werden mag, wenn er entdeckt, dass er ohne diese Voraussetzung zwei oder mehr Lösungen fände. Häufig gibt es Vorgaben, die zur Lösung logisch gar nicht benötigt würden, aber den Weg dorthin sehr erleichtern können. Manche Rätselsteller sorgen dafür, dass ihre Aufgabe mit und ohne Verbot der Null gleichermaßen eindeutig lösbar ist, oder sie kennzeichnen bestimmte Angaben ausdrücklich als fürs Lösen verzichtbar; damit hat der Rätsellöser dann die Wahl zwischen verschiedenen Schwierigkeitsstufen, indem er diese verwendet oder nicht. Neben den häufigen Kreuzzahlrätseln, für deren Lösung man nur Arithmetik oder allenfalls wenig mehr mathematisches Wissen braucht, lassen andere externes Bildungswissen in die Zahlbedingungen eingehen, etwa durch eine Bedingung wie ist das Geburtsjahr von Mozart. Kreuzzahlrätsel werden mittlerweile auch in Schulen eingesetzt, um den Mathematikunterricht abwechslungsreicher zu gestalten. Diverse Unterrichtsmaterialien dazu bieten verschiedene Verlage an. (de)
  • クロスナンバーパズル(Cross number puzzle 世界文化社が使用)またはマックロ(Mathematics cross ニコリが使用)は、与えられたヒントから盤面に数字を埋めるクロスワードパズルに似たパズルである。 (ja)
  • A cross-figure (also variously called cross number puzzle or figure logic) is a puzzle similar to a crossword in structure, but with entries which consist of numbers rather than words, with individual digits being entered in the blank cells. The numbers can be clued in various ways: * The clue can make it possible to find the number required directly, by using general knowledge (e.g. "Date of the Battle of Hastings") or arithmetic (e.g. "27 times 79") or other mathematical facts (e.g. "Seventh prime number") * The clue may require arithmetic to be applied to another answer or answers (e.g. "25 across times 3" or "9 down minus 3 across") * The clue may indicate possible answers but make it impossible to give the correct one without using crosslights (e.g. "A prime number") * One answer may be related to another in a non-determinate way (e.g. "A multiple of 24 down" or "5 across with its digits rearranged") * Some entries may either not be clued at all, or refer to another clue (e.g. 7 down may be clued as "See 13 down" if 13 down reads "7 down plus 5") * Entries may be grouped together for clueing purposes, e.g. "1 across, 12 across and 17 across together contain all the digits except 0" * Some cross-figures use an algebraic type of clue, with various letters taking unknown values (e.g. "A - 2B, where neither A nor B is known in advance) * Another special type of puzzle uses a real-world situation such as a family outing and base most clues on this (e.g. "Time taken to travel from Ayville to Beetown") Cross-figures which use mostly the first type of clue may be used for educational purposes, but most enthusiasts would agree that this clue type should be used rarely, if at all. Without this type a cross-figure may superficially seem to be impossible to solve, since no answer can apparently be filled in until another has first been found, which without the first type of clue appears impossible. However, if a different approach is adopted where, instead of trying to find complete answers (as would be done for a crossword) one gradually narrows down the possibilities for individual cells (or, in some cases, whole answers) then the problem becomes tractable. For example, if 12 across and 7 down both have three digits and the clue for 12 across is "7 down times 2", one can work out that (i) the last digit of 12 across must be even, (ii) the first digit of 7 down must be 1, 2, 3 or 4, and (iii) the first digit of 12 across must be between 2 and 9 inclusive. (It is an implicit rule of cross-figures that numbers cannot start with 0; however, some puzzles explicitly allow this) By continuing to apply this sort of argument, a solution can eventually be found. Another implicit rule of cross-figures is that no two answers should be the same (in cross-figures allowing numbers to start with 0, 0123 and 123 may be considered different.) A curious feature of cross-figures is that it makes perfect sense for the setter of a puzzle to try to solve it him or herself. Indeed, the setter should ideally do this (without direct reference to the answer) as it is essentially the only way to find out if the puzzle has a single unique solution. Alternatively, there are computer programs available that can be used for this purpose; however, they may not make it clear how difficult the puzzle is. Given that some basic mathematical knowledge is needed to solve cross-figures, they are much less popular than crosswords. As a result, very few books of them have ever been published. Dell Magazines publishes a magazine called Math Puzzles and Logic Problems six times a year which generally contains as many as a dozen of these puzzles, which they name "Figure Logics". A magazine called Figure it Out, which was dedicated to number puzzles, included some, but it was very short-lived. This also explains why cross-figures have fewer established conventions than crosswords (especially cryptic crosswords). One exception is the use of the semicolon (;) to attach two strings of numbers together, for example 1234;5678 becomes 12345678. Some cross-figures voluntarily ignore this option and other "non-mathematical" approaches (e.g. palindromic numbers and repunits) where same result can be achieved through algebraic means. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 8751011 (xsd:integer)
dbo:wikiPageRevisionID
  • 599236733 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • クロスナンバーパズル(Cross number puzzle 世界文化社が使用)またはマックロ(Mathematics cross ニコリが使用)は、与えられたヒントから盤面に数字を埋めるクロスワードパズルに似たパズルである。 (ja)
  • Ein Kreuzzahlrätsel ist ein Rätsel, das ein Schema aus Kästchen wie ein Kreuzworträtsel hat, in das aber statt Wörtern Zahlen einzutragen sind. Für diese Zahlen werden analog wie beim Kreuzworträtsel Bedingungen angegeben, meist arithmetische; so könnte etwa die Bedingung für eine zu findende 36 auf „ist Quadratzahl“ lauten. Öfter als bei Kreuzworträtseln formuliert die Bedingung an eine Zahl auch einen Zusammenhang mit einer oder mehreren der anderen Zahlen im Schema, z.B.: „ist Summe von A waagerecht und B senkrecht“. Typische Bedingungen in den Definitionen sind etwa: (de)
  • A cross-figure (also variously called cross number puzzle or figure logic) is a puzzle similar to a crossword in structure, but with entries which consist of numbers rather than words, with individual digits being entered in the blank cells. The numbers can be clued in various ways: (en)
rdfs:label
  • Kreuzzahlrätsel (de)
  • Cross-figure (en)
  • クロスナンバーパズル (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of