Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are highly energetic charged particles from outside of Earth ranging from protons, alpha particles, and nuclei of many heavier elements. About 1% of cosmic rays also consist of free electrons.

Property Value
dbo:abstract
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) تشظية الأشعّة الكونيّة (Cosmic ray spallation) هو شكل من أشكال الانشطار والتخليق النووي الطبيعي الناتج عن تأثير الأشعّة الكونيّة عالية الطاقة على الأنواع الكيميائية، ممّا يؤدّي إلى تشكّل عناصر جديدة. عند حدوث اصطدام بين الأشعة الكونية ذات الطاقة العالية الكامنة مع الجسيمات تحدث عملية تحرّر لكمّيات كبيرة من النويّات من البروتونات والنيوترونات. أدّت تشظية الأشعّة الكونيّة بعد الانفجار العظيم إلى حدوث وفرة في العناصر الخفيفة في الكون مثل الليثيوم والبيريليوم والبورون، بالإضافة إلى نظائر الألومنيوم والكربون والكلور والنيون. تدعي النويدات المتشكّلة بهذا الأسلوب بأنّها نويدات ذات أصل كوني. * 32xبوابة علم الفلك * 32xبوابة الفيزياء * 32xبوابة فضاء25بك هذه بذرة مقالة عن موضوع علمي بحاجة للتوسيع. شارك في تحريرها. (ar)
  • La Espalación de Rayos Cósmicos es una forma natural de que ocurra la fisión nuclear y la nucleosíntesis. Se refiere a la formación de elementos químicos a partir del impacto de rayos cósmicos en un objeto. Los rayos cósmicos son partículas altamente cargadas de energía de fuera de la Tierra, desde electrones desviados a partículas alfa. Éstas causan la espalación cuando un rayo cósmico (p.ej. un protón) impacta con materia, incluyendo otros rayos cósmicos. El resultado de la colisión es la expulsión de grandes miembros de nucleones (protones y neutrones) desde el objeto impactado. Este proceso no sólo ocurre en el espacio profundo, también ocurre en las capas altas de la atmósfera debido al impacto de rayos cósmicos. La espalación de rayos cósmicos produce algunos elementos ligeros como el Litio y el Boro. Este proceso fue descubierto por accidente en los años 1970. Los modelos de la Nucleosíntesis del Big Bang sugirien que la cantidad de deuterio era demasiado grande para ser consistente con la tasa de expansión del Universo y hubo un gran interés en los procesos que podían generar deuterio después del Big Bang. La espalación de rayos cósmicos fue investigada como un posible proceso para generar deuterio. Según se producía, la espalación no podía generar mucho deuterio y el exceso de deuterio en el Universo podía explicarse asumiendo la existencia de materia oscura no-bariónica. Sin embargo, estudios de la espalación demostraron que podía generar litio y boro. Isótopos del Aluminio, Berilio, Carbono (Carbono-14), Cloro, Yodo y Neón, también se formaron a través de la espalación de rayos cósmicos. (es)
  • Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are highly energetic charged particles from outside of Earth ranging from protons, alpha particles, and nuclei of many heavier elements. About 1% of cosmic rays also consist of free electrons. Cosmic rays cause spallation when a ray particle (e.g. a proton) impacts with matter, including other cosmic rays. The result of the collision is the expulsion of large numbers of nucleons (protons and neutrons) from the object hit. This process goes on not only in deep space, but in Earth's upper atmosphere and crustal surface (typically the upper ten meters) due to the ongoing impact of cosmic rays. Cosmic ray spallation is thought to be responsible for the abundance in the universe of some light elements such as lithium, beryllium, and boron. This process (cosmogenic nucleosynthesis) was discovered somewhat by accident during the 1970s: models of Big Bang nucleosynthesis suggested that the amount of deuterium was too large to be consistent with the expansion rate of the universe and there was therefore great interest in processes that could generate deuterium after the Big Bang nucleosynthesis. Cosmic ray spallation was investigated as a possible process to generate deuterium. As it turned out, spallation could not generate much deuterium, nor could nucleosynthesis in stars. However, the new studies of spallation showed that this process could generate lithium, beryllium and boron, and indeed these isotopes are over-represented in cosmic ray nuclei, as compared with solar atmospheres (whereas hydrogen and helium are present in about primordial ratios in cosmic rays). In addition to the above light elements, tritium and isotopes of aluminium, carbon (carbon-14), chlorine, iodine and neon are formed within solar system materials through cosmic ray spallation, and are termed cosmogenic nuclides. Since they remain trapped in the atmosphere or rock in which they formed, some can be very useful in the dating of materials by cosmogenic radionuclide dating, particularly in the geological field. In formation of a cosmogenic nuclide, a cosmic ray interacts with the nucleus of an in situ solar system atom, causing cosmic ray spallation. These isotopes are produced within earth materials such as rocks or soil, in Earth's atmosphere, and in extraterrestrial items such as meteorites. By measuring cosmogenic isotopes, scientists are able to gain insight into a range of geological and astronomical processes. There are both radioactive and stable cosmogenic isotopes. Some of the well-known naturally-occurring radioisotopes are tritium, carbon-14 and phosphorus-32. The timing of their formation determines which subset of nuclides formed by cosmic ray spallation, are termed primordial or cosmogenic (a nuclide cannot belong to both classes). By convention, certain stable nuclides of lithium, beryllium, and boron found on Earth are thought to have been produced by cosmic ray spallation before the solar system's formation (thus making these primordial nuclides, by definition) are not termed "cosmogenic," even though they were formed by the same process as the cosmogenic nuclides (although at an earlier time). In contrast, the radioactive nuclide beryllium-7 falls into this light element range, but this nuclide has a half-life too short for it to have been formed before the formation of the solar system, so that it cannot be a primordial nuclide. Since the cosmic ray spallation route is the most likely source of beryllium-7 in the environment, it is therefore cosmogenic. (en)
  • La spallation des rayons cosmiques est un mécanisme de nucléosynthèse utilisant la grande énergie cinétique des rayons cosmiques (qui sont pour l'essentiel des protons) pour briser des nucléides croisant leur trajectoire afin d'en former des nouveaux de masse atomique plus petite en général. La présence des éléments légers tels que le lithium (dont un petit pourcentage s'est formé au cours de la nucléosynthèse primordiale), le béryllium et le bore, fut longtemps une énigme pour les astrophysiciens étant donné que la fournaise nucléaire du cœur des étoiles est plus propice à les détruire qu'à les synthétiser. La solution vient du vide interstellaire où des rayons cosmiques de haute énergie, percutant et brisant en nucléides plus petits des noyaux d'atomes de carbone, d'azote et d'oxygène, donnent naissance au Li, Be et B. * Exemple : formation du béryllium 10 (10Be) :Rayon cosmique produits de spallation du rayon cosmique incident. De même à la surface de la Terre, la spallation des rayons cosmiques est responsable de la formation de quelques éléments tel que l'aluminium 26 ou le carbone 14 par exemples. (fr)
  • 宇宙線による核破砕(Cosmic ray spallation)は、天然に起こる核分裂や原子核合成の形式である。宇宙線が対象に衝突することによって元素が形成される。宇宙線とは、地球外から来る高いエネルギーを持った粒子であり、自由電子からアルファ粒子まで様々なものからなる。これらが他の物質と衝突すると、核破砕反応を引き起こし、その結果、陽子や中性子等の核子が原子核から弾き出される。この過程は、大気圏外だけではなく、大気上層部でも生じる。 宇宙線による核破砕によって、リチウムやホウ素のような軽い元素が作られる。この過程は1970年代に偶然発見された。 ビッグバン原子核合成のモデルは、観測される重水素の量が宇宙の膨張速度から計算した値と一致しないほど多いことを示唆し、ビッグバン後に重水素を生成した過程について多くの関心が集まっている。 宇宙線による核破砕は、重水素を生成しうる過程として研究が行われた。結局、宇宙線による核破砕によってはそれほど多くの重水素が生成しないことが分かり、宇宙に存在する余分な重水素は、非バリオンのダークマターの存在を仮定することで説明が可能となった。しかし、宇宙線による核破砕の研究によって、この過程によりリチウム、ベリリウム、ホウ素等が生成されることが分かった。これらの元素は、実際に大気よりも宇宙線に多く存在する原子核である。(対して、水素やヘリウムは大気中と宇宙線で存在比は変わらない。) アルミニウムの同位体、炭素の同位体、塩素の同位体、ヨウ素の同位体、ネオンの同位体も宇宙線による核破砕で生じることが知られている。 (ja)
  • 宇宙射線散裂是自然發生的一種核分裂和核合成形式,它經由宇宙射線撞擊物質產生新的元素。宇宙射線是來自地球之外的高能粒子,主要是飄蕩在空間中的電子和α粒子。當宇宙射線(主要是質子)撞擊到物質,包括其他的宇宙射線,就會造成散裂。碰撞的結果是被撞的大的核子會逐出核子(質子和中子),這種過程不僅在宇宙的深處進行,宇宙射線的撞擊也在我們的上層大氣層內進行。 宇宙射線散裂製造出輕的元素,像是鋰和硼,這個過程是在1970年代偶然發現的。太初核合成的模型認為氘的總量太大,與宇宙擴散的速率不能一致,因此對在大霹靂之後是否仍有產生氘的過程在繼續進行,產生極大的興趣。 宇宙射線散裂是被調查的能製造氘的一種過程,但是它的結果是散裂不可能製造出氘,並且剩餘的氘含量可以用假設存在的重子暗物質來解釋。然而,對散裂的研究顯示,它可以產生鋰和硼。鋁、鈹、碳(碳-14)、氯、碘和氖的同位素都可以經由宇宙射線散裂產生。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2447137 (xsd:integer)
dbo:wikiPageRevisionID
  • 685594785 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • 宇宙射線散裂是自然發生的一種核分裂和核合成形式,它經由宇宙射線撞擊物質產生新的元素。宇宙射線是來自地球之外的高能粒子,主要是飄蕩在空間中的電子和α粒子。當宇宙射線(主要是質子)撞擊到物質,包括其他的宇宙射線,就會造成散裂。碰撞的結果是被撞的大的核子會逐出核子(質子和中子),這種過程不僅在宇宙的深處進行,宇宙射線的撞擊也在我們的上層大氣層內進行。 宇宙射線散裂製造出輕的元素,像是鋰和硼,這個過程是在1970年代偶然發現的。太初核合成的模型認為氘的總量太大,與宇宙擴散的速率不能一致,因此對在大霹靂之後是否仍有產生氘的過程在繼續進行,產生極大的興趣。 宇宙射線散裂是被調查的能製造氘的一種過程,但是它的結果是散裂不可能製造出氘,並且剩餘的氘含量可以用假設存在的重子暗物質來解釋。然而,對散裂的研究顯示,它可以產生鋰和硼。鋁、鈹、碳(碳-14)、氯、碘和氖的同位素都可以經由宇宙射線散裂產生。 (zh)
  • Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are highly energetic charged particles from outside of Earth ranging from protons, alpha particles, and nuclei of many heavier elements. About 1% of cosmic rays also consist of free electrons. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) تشظية الأشعّة الكونيّة (Cosmic ray spallation) هو شكل من أشكال الانشطار والتخليق النووي الطبيعي الناتج عن تأثير الأشعّة الكونيّة عالية الطاقة على الأنواع الكيميائية، ممّا يؤدّي إلى تشكّل عناصر جديدة. عند حدوث اصطدام بين الأشعة الكونية ذات الطاقة العالية الكامنة مع الجسيمات تحدث عملية تحرّر لكمّيات كبيرة من النويّات من البروتونات والنيوترونات. (ar)
  • La Espalación de Rayos Cósmicos es una forma natural de que ocurra la fisión nuclear y la nucleosíntesis. Se refiere a la formación de elementos químicos a partir del impacto de rayos cósmicos en un objeto. Los rayos cósmicos son partículas altamente cargadas de energía de fuera de la Tierra, desde electrones desviados a partículas alfa. Éstas causan la espalación cuando un rayo cósmico (p.ej. un protón) impacta con materia, incluyendo otros rayos cósmicos. El resultado de la colisión es la expulsión de grandes miembros de nucleones (protones y neutrones) desde el objeto impactado. Este proceso no sólo ocurre en el espacio profundo, también ocurre en las capas altas de la atmósfera debido al impacto de rayos cósmicos. (es)
  • 宇宙線による核破砕(Cosmic ray spallation)は、天然に起こる核分裂や原子核合成の形式である。宇宙線が対象に衝突することによって元素が形成される。宇宙線とは、地球外から来る高いエネルギーを持った粒子であり、自由電子からアルファ粒子まで様々なものからなる。これらが他の物質と衝突すると、核破砕反応を引き起こし、その結果、陽子や中性子等の核子が原子核から弾き出される。この過程は、大気圏外だけではなく、大気上層部でも生じる。 宇宙線による核破砕によって、リチウムやホウ素のような軽い元素が作られる。この過程は1970年代に偶然発見された。 ビッグバン原子核合成のモデルは、観測される重水素の量が宇宙の膨張速度から計算した値と一致しないほど多いことを示唆し、ビッグバン後に重水素を生成した過程について多くの関心が集まっている。 アルミニウムの同位体、炭素の同位体、塩素の同位体、ヨウ素の同位体、ネオンの同位体も宇宙線による核破砕で生じることが知られている。 (ja)
  • La spallation des rayons cosmiques est un mécanisme de nucléosynthèse utilisant la grande énergie cinétique des rayons cosmiques (qui sont pour l'essentiel des protons) pour briser des nucléides croisant leur trajectoire afin d'en former des nouveaux de masse atomique plus petite en général. La solution vient du vide interstellaire où des rayons cosmiques de haute énergie, percutant et brisant en nucléides plus petits des noyaux d'atomes de carbone, d'azote et d'oxygène, donnent naissance au Li, Be et B. * Exemple : formation du béryllium 10 (10Be) :Rayon cosmique (fr)
rdfs:label
  • تشظية الأشعة الكونية (ar)
  • Cosmic ray spallation (en)
  • Espalación de rayos cósmicos (es)
  • Spallation des rayons cosmiques (fr)
  • 宇宙線による核破砕 (ja)
  • 宇宙射線散裂 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of