"Correlation does not imply causation" is a phrase used in statistics to emphasize that a correlation between two variables does not imply that one causes the other. Many statistical tests calculate correlation between variables. A few go further, using correlation as a basis for testing a hypothesis of a true causal relationship; examples are the Granger causality test and convergent cross mapping.

Property Value
dbo:abstract
• "Correlation does not imply causation" is a phrase used in statistics to emphasize that a correlation between two variables does not imply that one causes the other. Many statistical tests calculate correlation between variables. A few go further, using correlation as a basis for testing a hypothesis of a true causal relationship; examples are the Granger causality test and convergent cross mapping. The counter-assumption, that "correlation proves causation," is considered a questionable cause logical fallacy in that two events occurring together are taken to have a cause-and-effect relationship. This fallacy is also known as cum hoc ergo propter hoc, Latin for "with this, therefore because of this," and "false cause." A similar fallacy, that an event that follows another was necessarily a consequence of the first event, is sometimes described as post hoc ergo propter hoc (Latin for "after this, therefore because of this."). For example, in a widely studied case, numerous epidemiological studies showed that women taking combined hormone replacement therapy (HRT) also had a lower-than-average incidence of coronary heart disease (CHD), leading doctors to propose that HRT was protective against CHD. But randomized controlled trials showed that HRT caused a small but statistically significant increase in risk of CHD. Re-analysis of the data from the epidemiological studies showed that women undertaking HRT were more likely to be from higher socio-economic groups (ABC1), with better-than-average diet and exercise regimens. The use of HRT and decreased incidence of coronary heart disease were coincident effects of a common cause (i.e. the benefits associated with a higher socioeconomic status), rather than a direct cause and effect, as had been supposed. As with any logical fallacy, identifying that the reasoning behind an argument is flawed does not imply that the resulting conclusion is false. In the instance above, if the trials had found that hormone replacement therapy does in fact have a negative incidence on the likelihood of coronary heart disease the assumption of causality would have been correct, although the logic behind the assumption would still have been flawed. (en)
dbo:wikiPageID
• 39834 (xsd:integer)
dbo:wikiPageRevisionID
• 744242931 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
• "Correlation does not imply causation" is a phrase used in statistics to emphasize that a correlation between two variables does not imply that one causes the other. Many statistical tests calculate correlation between variables. A few go further, using correlation as a basis for testing a hypothesis of a true causal relationship; examples are the Granger causality test and convergent cross mapping. (en)
rdfs:label
• Correlation does not imply causation (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of