Property 
Value 
dbo:abstract

 The conductance quantum, denoted by the symbol G0 is the quantized unit of electrical conductance. It is defined as: = 7.7480917346(25)×10−5 S. It appears when measuring the conductance of a quantum point contact, and, more generally, is a key component of Landauer formula which relates the electrical conductance of a quantum conductor to its quantum properties. It is twice the reciprocal of the von Klitzing constant (2/RK). Note that the conductance quantum does not mean that the conductance of any system must be an integer multiple of G0. Instead, it describes the conductance of two quantum channels (one channel for spinup and one channel for spindown) if the probability for transmitting an electron that enters the channel is unity, i.e. if transport through the channel is ballistic. If the transmission probability is less than unity, then the conductance of the channel is less than G0. The total conductance of a system is equal to the sum of the conductances of all the parallel quantum channels that make up the system. (en)

dbo:wikiPageID
 
dbo:wikiPageRevisionID
 
dct:subject
 
rdf:type
 
rdfs:comment

 The conductance quantum, denoted by the symbol G0 is the quantized unit of electrical conductance. It is defined as: = 7.7480917346(25)×10−5 S. It appears when measuring the conductance of a quantum point contact, and, more generally, is a key component of Landauer formula which relates the electrical conductance of a quantum conductor to its quantum properties. It is twice the reciprocal of the von Klitzing constant (2/RK). (en)

rdfs:label
 
owl:sameAs
 
prov:wasDerivedFrom
 
foaf:isPrimaryTopicOf
 
is dbo:wikiPageRedirects
of  
is foaf:primaryTopic
of  