In mathematics, a complete category is a category in which all small limits exist. That is, a category C is complete if every diagram F : J → C where J is small has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other.

Property Value
dbo:abstract
  • In mathematics, a complete category is a category in which all small limits exist. That is, a category C is complete if every diagram F : J → C where J is small has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other. A weaker form of completeness is that of finite completeness. A category is finitely complete if all finite limits exists (i.e. limits of diagrams indexed by a finite category J). Dually, a category is finitely cocomplete if all finite colimits exist. (en)
  • Категория называется полной в малом, если в ней любая малая диаграмма имеет предел. Двойственное понятие — кополная в малом категория, то есть та, в которой любая малая диаграмма имеет копредел. Аналогично определяется конечная полнота и вообще α-полнота для любого регулярного кардинала α. Из них всех наиболее употребимой является полнота в малом, поэтому категории, полные в малом, называют просто полными. Существование пределов вообще всех (не обязательно малых) диаграмм оказывается слишком сильным условием, так как такая категория с необходимостью была бы предпорядком, между любыми двумя её объектами было бы не более одного морфизма. Категория, являющаяся одновременно полной и кополной, называется биполной. Более слабое свойство категории — конечная полнота. Категория называется конечно полной, если в ней существуют все конечные пределы (то есть пределы всех диаграмм, индексированных конечным множеством). Аналогично определяются конечно кополные категории. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 62781 (xsd:integer)
dbo:wikiPageRevisionID
  • 718111254 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • In mathematics, a complete category is a category in which all small limits exist. That is, a category C is complete if every diagram F : J → C where J is small has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other. (en)
  • Категория называется полной в малом, если в ней любая малая диаграмма имеет предел. Двойственное понятие — кополная в малом категория, то есть та, в которой любая малая диаграмма имеет копредел. Аналогично определяется конечная полнота и вообще α-полнота для любого регулярного кардинала α. Из них всех наиболее употребимой является полнота в малом, поэтому категории, полные в малом, называют просто полными. Существование пределов вообще всех (не обязательно малых) диаграмм оказывается слишком сильным условием, так как такая категория с необходимостью была бы предпорядком, между любыми двумя её объектами было бы не более одного морфизма. (ru)
rdfs:label
  • Complete category (en)
  • Полная категория (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of