In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows: * 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas. * 3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes. If every plane parallel to these two planes intersects both regions in cross-sections of equal area, then the two regions have equal volumes.

Property Value
dbo:abstract
  • في الهندسة، مبدأ كافالييري، الذي سُمّي على اسم بونافينتوريا كافالييري، ينصّ على ما يلي: * الحالة ثنائية الأبعاد: افرض أن شكليْن في مستوى يقعان بين خطيْن متوازييْن. إذا تقاطع كل خط موازٍ لهذين الخطين مع الشكلين في مقاطع متساوية الطول، فإن للشكلين نفس المساحة. * الحالة ثلاثية الأبعاد: افرض أن مجسّميْن يقعان بين مستوييْن متوازييْن. إذا تقاطع كل مستوى موازٍ لهذين المستوييْن مع هذين المجسّميْن في مقاطع عرضية ذات مساحات متساوية، فإنّ للمجسّمين نفس الحجم. - يمكن النظر إلى مبدأ كافالييري كخطوة أولى باتجاه حساب التكامل. - يُعد المبدأ صورة خاصة مبكّرة من نظرية فوبيني.- تطوّر مبدأ كافالييري نتيجة الأسلوب الإغريقي القديم المعروف باسم أسلوب الاستنفاذ، الذي استعمل الحدود ولكن ليس القيم المتناهية الصغر. (ar)
  • El principio de Cavalieri (denominado en honor a su descubridor Bonaventura Cavalieri en el siglo XVII) es una ley geométrica que enuncia la diferencia de volumen en dos cuerpos. El enunciado podría ser: Hoy en día, en la moderna teoría de geometría analítica, el principio de Cavalieri es tomado como un caso especial del Principio de Fubini. Cavalieri no hizo un uso extensivo del principio, empleándolo sólo en su Método de las indivisibles que expone en el año 1635 con la publicación de su obra Geometria indivisibilibus y también aparece en 1647 en su Exercitationes Geometricae. Antes de principios siglo XVII sólo se podía calcular el volumen de algunos cuerpos especiales, ya tratados geométricamente, por los resultados obtenidos por el griego Arquímedes y Kepler. La idea del cálculo de volúmenes mediante la comparación de secciones dio paso al desarrollo de los primeros pasos del cálculo infinitesimal así como de las integrales. (es)
  • Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen Mathematiker Bonaventura Cavalieri zurückgeht. (de)
  • En géométrie, la méthode des indivisibles ou principe de Cavalieri est une méthode de calcul d'aire et de volume inventée par Bonaventura Cavalieri au XVIIe siècle, développée par Gilles Personne de Roberval, Evangelista Torricelli et Blaise Pascal, plus efficace que la méthode d'exhaustion d'Archimède mais aussi plus risquée à appliquer. On peut la considérer comme l'ancêtre du calcul intégral, développé quelque temps après par Leibniz et Newton. (fr)
  • In matematica, il metodo degli indivisibili è un procedimento introdotto negli anni successivi al 1640 da Bonaventura Cavalieri per il calcolo di aree e volumi che ha contribuito allo sviluppo del calcolo integrale. Esso si può far derivare dal principio di Cavalieri: "Se due solidi hanno uguale altezza e se le sezioni tagliate da piani paralleli alle basi e ugualmente distanti da queste stanno sempre in un dato rapporto, anche i volumi dei solidi staranno in questo rapporto." Questo enunciato, noto anche come principio di Cavalieri degli indivisibili, contiene in sé elementi base del calcolo integrale. Il termine usato da Cavalieri, indivisibile, potrebbe tradursi con l'espressione moderna di figura geometrica di spessore infinitesimo.Per cercare di giustificare questa affermazione osserviamo come egli dimostrò un teorema che, utilizzando la notazione del calcolo infinitesimale, è equivalente alla formula moderna: Vediamolo nel piano, nel caso : per dimostrare questa formula egli confrontava le potenze dei segmenti di un parallelogramma paralleli alle basi con le corrispondenti potenze dei segmenti dell'uno o dell'altro dei due triangoli in cui la diagonale divide il parallelogramma. File:CavalieriParallelogramma.JPG Il parallelogramma viene diviso dalla diagonale in due triangoli e si considera il segmento chiamandolo indivisibile del triangolo parallelo alla base . Prendendo e tracciando parallelo a si individua un indivisibile del triangolo il quale è sovrapponibile a e quindi equivalente ad esso. È possibile accoppiare tutti gli indivisibili contenuti nel triangolo con i corrispondenti indivisibili uguali contenuti nel triangolo ; i due triangoli hanno dunque aree uguali. Poiché il parallelogramma è la somma degli indivisibili contenuti nei due triangoli, è chiaro che la somma delle prime potenze dei segmenti contenuti in uno dei due triangoli componenti è uguale alla metà della somma delle prime potenze dei segmenti contenuti nel parallelogramma: in termini moderni: : . Con ragionamenti simili Cavalieri dimostrò che la somma dei quadrati dei segmenti in un triangolo era 1/3 della somma dei quadrati contenuti nel parallelogramma; per i cubi mostrò che il rapporto era 1/4, fino a giungere nel 1647 all'enunciato generale per le potenze n-esime. Questo teorema aprì la strada a numerosi procedimenti di calcolo effettivo (algoritmi) di aree e volumi, procedimenti successivamente inquadrati nel calcolo infinitesimale. Si possono fare alcuni esempi di calcolo utilizzando il metodo degli indivisibili: si è visto come Cavalieri considerò una figura piana convessa come costituita dalle infinite corde che essa intercetta su un fascio di rette parallele e, successivamente, ciascuna di queste corde come un rettangolo avente per base la corda e un'altezza piccolissima (in linguaggio moderno ogni indivisibile è rappresentato dal prodotto , che rappresenta l'area del rettangolo di base e altezza ). Allo stesso modo considerò un solido convesso come costituito dalle sezioni con un sistema di piani paralleli chiamando indivisibile il cilindro avente come base la sezione e altezza piccolissima. (it)
  • カヴァリエリの原理(カヴァリエリのげんり、Cavalieri's principle)は、面積や体積に関する一般的な法則のひとつである。カヴァリエリの定理、不可分の方法 (method of indivisibles) ともいう。例えば体積についてのカヴァリエリの原理とは、大まかには「切り口の面積が常に等しい2つの立体の体積は等しい」という主張である。カヴァリエリは17世紀のイタリアの数学者。 (ja)
  • Метод неделимых — возникшее в конце XVI века наименование совокупности приёмов для вычисления площадей фигур или объёмов геометрических тел.Идея метода для плоских фигур состояла в том, чтобы разделить эти фигуры на фигуры нулевой ширины («неделимые», обычно это параллельные отрезки), которые потом «собираются» без изменения их длины и образуют другую фигуру, площадь которой уже известна (см. ниже примеры).Вычисление объёма пространственных тел происходит аналогично, только они разделяются не на отрезки, а на «неделимые» плоские фигуры. Формализация этих приёмов во многом определила в дальнейшем зарождение и развитие интегрального исчисления. Наиболее полное выражение и теоретическое обоснование метод неделимых получил в работе итальянского математика Бонавентуры Кавальери «Геометрия неделимых непрерывных, выведенная из некоего нового подсчёта» (Geometria indivisibilibus continuorum nova quadam ratione promota). (ru)
  • Zasada Cavalieriego – metoda obliczania objętości brył przestrzennych, odkryta przez Archimedesa i opisana ponownie przez XVII-wiecznego matematyka włoskiego, Bonaventurę Cavalieriego. Obecnie uogólniona na wielowymiarową miarę Lebesgue'a oraz abstrakcyjne przestrzenie z miarą produktową. Zasada Cavalieriego, w swoim oryginalnym sformułowaniu, mówi że: Jeśli dwie bryły mają tę własność, że ich przekroje wszystkimi płaszczyznami równoległymi do jednej, z góry ustalonej płaszczyzny, mają te same pola, to te bryły mają równe objętości. Twierdzenie to zwykle wystarcza do obliczania objętości znanych brył, jak np. stożek czy elipsoida, jednak może być w naturalny sposób uogólnione na język współczesnej matematyki. (pl)
  • 祖gèng暅原理,又名等幂等积定理,是指所有等高处横截面积相等的两个同高立体,其体积也必然相等的定理。祖暅之《綴術》有云:「緣冪勢既同,則積不容異。」 该原理最早由中国古代数学家刘徽提出。南北朝时又被祖冲之的儿子祖暅提出。祖冲之兩父子采用这一原理,求出了牟合方盖的体积,进而算出球体积。在欧洲17世纪意大利数学家卡瓦列里亦發現相同定理,所以西方文献一般称该原理为卡瓦列里原理。 在現代的解析幾何和測度應用中,祖暅原理是富比尼定理中的一個特例。卡瓦列里沒有對這條的嚴謹證明,只發表在1635年的Geometria indivisibilibus以及1647年的Exercitationes Geometricae中,用以證明自己的Methode der Indivisibilien。以此方式可以計算某些立體的體積,甚至超越了阿基米德和克卜勒的成績。這個定理引發了以面積計算體積的方法並成為了積分發展的一個重要步驟。 (zh)
  • O princípio de Cavalieri (a base do método dos indivisíveis) refere-se às seguintes duas proposições em geometria: "Dadas duas regiões planas incluídas entre um par de retas paralelas, se toda reta paralela ao par de retas e que intersecta as regiões o faz em segmentos cujos comprimentos estão sempre na mesma razão, então as áreas das regiões também estão nessa mesma razão." E a proposição análoga para sólidos: "Dados dois sólidos incluídos entre um par de planos paralelos, se todo plano paralelo ao par de planos e que intersecta os sólidos o faz em seções cujas áreas estão sempre na mesma razão, então os volumes dos sólidos também estão nessa mesma razão." (pt)
  • In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows: * 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas. * 3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes. If every plane parallel to these two planes intersects both regions in cross-sections of equal area, then the two regions have equal volumes. Today Cavalieri's principle is seen as an early step towards integral calculus, and while it is used in some forms, such as its generalization in Fubini's theorem, results using Cavalieri's principle can often be shown more directly via integration. In the other direction, Cavalieri's principle grew out of the ancient Greek method of exhaustion, which used limits but did not use infinitesimals. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21697672 (xsd:integer)
dbo:wikiPageRevisionID
  • 744439392 (xsd:integer)
dbp:title
  • Cavalieri's Principle
dbp:urlname
  • CavalierisPrinciple
dct:subject
rdf:type
rdfs:comment
  • Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen Mathematiker Bonaventura Cavalieri zurückgeht. (de)
  • En géométrie, la méthode des indivisibles ou principe de Cavalieri est une méthode de calcul d'aire et de volume inventée par Bonaventura Cavalieri au XVIIe siècle, développée par Gilles Personne de Roberval, Evangelista Torricelli et Blaise Pascal, plus efficace que la méthode d'exhaustion d'Archimède mais aussi plus risquée à appliquer. On peut la considérer comme l'ancêtre du calcul intégral, développé quelque temps après par Leibniz et Newton. (fr)
  • カヴァリエリの原理(カヴァリエリのげんり、Cavalieri's principle)は、面積や体積に関する一般的な法則のひとつである。カヴァリエリの定理、不可分の方法 (method of indivisibles) ともいう。例えば体積についてのカヴァリエリの原理とは、大まかには「切り口の面積が常に等しい2つの立体の体積は等しい」という主張である。カヴァリエリは17世紀のイタリアの数学者。 (ja)
  • 祖gèng暅原理,又名等幂等积定理,是指所有等高处横截面积相等的两个同高立体,其体积也必然相等的定理。祖暅之《綴術》有云:「緣冪勢既同,則積不容異。」 该原理最早由中国古代数学家刘徽提出。南北朝时又被祖冲之的儿子祖暅提出。祖冲之兩父子采用这一原理,求出了牟合方盖的体积,进而算出球体积。在欧洲17世纪意大利数学家卡瓦列里亦發現相同定理,所以西方文献一般称该原理为卡瓦列里原理。 在現代的解析幾何和測度應用中,祖暅原理是富比尼定理中的一個特例。卡瓦列里沒有對這條的嚴謹證明,只發表在1635年的Geometria indivisibilibus以及1647年的Exercitationes Geometricae中,用以證明自己的Methode der Indivisibilien。以此方式可以計算某些立體的體積,甚至超越了阿基米德和克卜勒的成績。這個定理引發了以面積計算體積的方法並成為了積分發展的一個重要步驟。 (zh)
  • في الهندسة، مبدأ كافالييري، الذي سُمّي على اسم بونافينتوريا كافالييري، ينصّ على ما يلي: * الحالة ثنائية الأبعاد: افرض أن شكليْن في مستوى يقعان بين خطيْن متوازييْن. إذا تقاطع كل خط موازٍ لهذين الخطين مع الشكلين في مقاطع متساوية الطول، فإن للشكلين نفس المساحة. * الحالة ثلاثية الأبعاد: افرض أن مجسّميْن يقعان بين مستوييْن متوازييْن. إذا تقاطع كل مستوى موازٍ لهذين المستوييْن مع هذين المجسّميْن في مقاطع عرضية ذات مساحات متساوية، فإنّ للمجسّمين نفس الحجم. (ar)
  • El principio de Cavalieri (denominado en honor a su descubridor Bonaventura Cavalieri en el siglo XVII) es una ley geométrica que enuncia la diferencia de volumen en dos cuerpos. El enunciado podría ser: (es)
  • In matematica, il metodo degli indivisibili è un procedimento introdotto negli anni successivi al 1640 da Bonaventura Cavalieri per il calcolo di aree e volumi che ha contribuito allo sviluppo del calcolo integrale. Esso si può far derivare dal principio di Cavalieri: "Se due solidi hanno uguale altezza e se le sezioni tagliate da piani paralleli alle basi e ugualmente distanti da queste stanno sempre in un dato rapporto, anche i volumi dei solidi staranno in questo rapporto." Vediamolo nel piano, nel caso File:CavalieriParallelogramma.JPG Il parallelogramma viene diviso dalla diagonale . Prendendo (it)
  • Zasada Cavalieriego – metoda obliczania objętości brył przestrzennych, odkryta przez Archimedesa i opisana ponownie przez XVII-wiecznego matematyka włoskiego, Bonaventurę Cavalieriego. Obecnie uogólniona na wielowymiarową miarę Lebesgue'a oraz abstrakcyjne przestrzenie z miarą produktową. Zasada Cavalieriego, w swoim oryginalnym sformułowaniu, mówi że: Jeśli dwie bryły mają tę własność, że ich przekroje wszystkimi płaszczyznami równoległymi do jednej, z góry ustalonej płaszczyzny, mają te same pola, to te bryły mają równe objętości. (pl)
  • Метод неделимых — возникшее в конце XVI века наименование совокупности приёмов для вычисления площадей фигур или объёмов геометрических тел.Идея метода для плоских фигур состояла в том, чтобы разделить эти фигуры на фигуры нулевой ширины («неделимые», обычно это параллельные отрезки), которые потом «собираются» без изменения их длины и образуют другую фигуру, площадь которой уже известна (см. ниже примеры).Вычисление объёма пространственных тел происходит аналогично, только они разделяются не на отрезки, а на «неделимые» плоские фигуры. Формализация этих приёмов во многом определила в дальнейшем зарождение и развитие интегрального исчисления. (ru)
  • In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows: * 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas. * 3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes. If every plane parallel to these two planes intersects both regions in cross-sections of equal area, then the two regions have equal volumes. (en)
  • O princípio de Cavalieri (a base do método dos indivisíveis) refere-se às seguintes duas proposições em geometria: "Dadas duas regiões planas incluídas entre um par de retas paralelas, se toda reta paralela ao par de retas e que intersecta as regiões o faz em segmentos cujos comprimentos estão sempre na mesma razão, então as áreas das regiões também estão nessa mesma razão." E a proposição análoga para sólidos: (pt)
rdfs:label
  • مبدأ كافالييري (ar)
  • Prinzip von Cavalieri (de)
  • Principio de Cavalieri (es)
  • Méthode des indivisibles (fr)
  • Metodo degli indivisibili (it)
  • カヴァリエリの原理 (ja)
  • Zasada Cavalieriego (pl)
  • Метод неделимых (ru)
  • Princípio de Cavalieri (pt)
  • 祖暅原理 (zh)
  • Cavalieri's principle (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of