In engineering, applied mathematics, and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters π1, π2, ..., πp constructed from the original variables. (Here k is the number of physical dimensions involved; it is obtained as the rank of a particular matrix.)

Property Value
dbo:abstract
• In engineering, applied mathematics, and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters π1, π2, ..., πp constructed from the original variables. (Here k is the number of physical dimensions involved; it is obtained as the rank of a particular matrix.) The theorem can be seen as a scheme for nondimensionalization because it provides a method for computing sets of dimensionless parameters from the given variables, even if the form of the equation is still unknown. (en)
dbo:wikiPageID
• 51399 (xsd:integer)
dbo:wikiPageRevisionID
• 738867298 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
• In engineering, applied mathematics, and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters π1, π2, ..., πp constructed from the original variables. (Here k is the number of physical dimensions involved; it is obtained as the rank of a particular matrix.) (en)
rdfs:label
• Buckingham π theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of