ブラーマグプタの定理(ブラーマグプタの定理、Brahmagupta theorem)は初等幾何学の定理である。円に内接する四角形で対角線が互いに垂直に交わるものについて、対角線の交点から一辺に向けて垂線を下ろしたとき、この線は反対側の辺を二等分する、ということを主張している。インドの数学者ブラーマグプタにちなんで名づけられた。より具体的に言えば、A, B, C, D を円周上の4点で線分 AC と線分 BD が垂直に交わるものとし、線分 AC と線分 BD の交点を M とする。M から線分 BC に向けて下ろした垂線の足を E とし、F を直線 EM と線分 AD の交点を F とするとき、F は線分 AD の中点である、というのが定理の主張である。

Property Value
dbo:abstract
  • ブラーマグプタの定理(ブラーマグプタの定理、Brahmagupta theorem)は初等幾何学の定理である。円に内接する四角形で対角線が互いに垂直に交わるものについて、対角線の交点から一辺に向けて垂線を下ろしたとき、この線は反対側の辺を二等分する、ということを主張している。インドの数学者ブラーマグプタにちなんで名づけられた。より具体的に言えば、A, B, C, D を円周上の4点で線分 AC と線分 BD が垂直に交わるものとし、線分 AC と線分 BD の交点を M とする。M から線分 BC に向けて下ろした垂線の足を E とし、F を直線 EM と線分 AD の交点を F とするとき、F は線分 AD の中点である、というのが定理の主張である。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1884241 (xsd:integer)
dbo:wikiPageRevisionID
  • 632931874 (xsd:integer)
dbp:title
  • Brahmagupta's theorem (en)
dbp:urlname
  • BrahmaguptasTheorem (en)
dct:subject
rdf:type
rdfs:comment
  • ブラーマグプタの定理(ブラーマグプタの定理、Brahmagupta theorem)は初等幾何学の定理である。円に内接する四角形で対角線が互いに垂直に交わるものについて、対角線の交点から一辺に向けて垂線を下ろしたとき、この線は反対側の辺を二等分する、ということを主張している。インドの数学者ブラーマグプタにちなんで名づけられた。より具体的に言えば、A, B, C, D を円周上の4点で線分 AC と線分 BD が垂直に交わるものとし、線分 AC と線分 BD の交点を M とする。M から線分 BC に向けて下ろした垂線の足を E とし、F を直線 EM と線分 AD の交点を F とするとき、F は線分 AD の中点である、というのが定理の主張である。 (ja)
rdfs:label
  • Brahmagupta theorem (en)
  • مبرهنة براهماغوبتا (ar)
  • Satz von Brahmagupta (de)
  • Théorème de Brahmagupta (fr)
  • Teorema de Brahmagupta (es)
  • ブラーマグプタの定理 (ja)
  • 婆羅摩笈多定理 (zh)
  • Теорема Брахмагупты (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of