Big data is a term for data sets that are so large or complex that traditional data processing applications are inadequate. Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, querying and information privacy. The term often refers simply to the use of predictive analytics or certain other advanced methods to extract value from data, and seldom to a particular size of data set. Accuracy in big data may lead to more confident decision making, and better decisions can result in greater operational efficiency, cost reduction and reduced risk.

Property Value
dbo:abstract
  • البيانات الضخمة هي عبارة عن مجموعة من مجموعة البيانات الضخمة جداً والمعقدة لدرجة أنه يُصبح من الصعب معالجتها باستخدام أداة واحدة فقط من أدوات إدارة قواعد البيانات أو باستخدام تطبيقات معالجة البيانات التقليدية. حيث تشمل التحديات الالتقاط، والمدة، والتخزين، والبحث، والمشاركة، والنقل، والتحليل والتصور. ويرجع الاتجاه إلي مجموعات البيانات الضخمة بسبب المعلومات الإضافية المشتقة من تحليل مجموعة واحدة كبيرة من البيانات ذات الصلة، بالمقارنة مع المجموعات المنفصلة الأصغر حجماً مع نفس الحجم الإجمالي للبيانات، مما يسمح بوجود ارتباطات تكشف "الاتجاهات التجارية المحورية، وتحديد جودة البحث، وربط الاستشهادات القانونية، ومكافحة الجريمة وتحديد ظروف حركة تدفق البيانات في الوقت الحقيقي".اعتباراً من عام 2012، كانت الحدود المفروضة على حجم مجموعات البيانات الملائمة للمعالجة في مدة معقولة من الوقت خاضعة لوحدة قياس البيانات إكسابايت. عادة ما يواجه العلماء عددا من القيود بسبب مجموعات البيانات الضخمة الموجودة في العديد من المجالات، والتي تتضمن الأرصاد الجوية(علم الطقس)، وعلم الجينات(علم الجينوم)، والمحاكاة الفيزيائية. المعقدة والبحوث البيولوجية والبيئية, وتؤثر القيود أيضاً علي بحث الانترنت(محرك بحث)، وتقنية الأعمال التجارية والتمويل. وتنمو مجموعات البيانات في الحجم بشكل جزئي، ويرجع ذلك لأنها يتم جمعها بشكل متزايد عن طريق أجهزة استشعار المعلومات المتنقلة، والتقنيات الحسية الجوية (الاستشعار عن بعد)، وسجلات البرامج، والكاميرات، والميكروفونات، وأجهزة تحديد ذبذبات الإرسال(تحديد الهوية بإستخدام موجات الراديو) وشبكات استشعار اللاسلكية. وتضاعفت القدرة التكنولوجية العالمية لتخزين المعلومات للفرد الواحد تقريباً كل 40 شهر من الثمانينات، واعتباراً من عام 2012، ينشيء 2.5 كوينتيليونبايت ( 2.5 × 1018) من البيانات يوميا. والتحدي بالنسبة للشركات الكبيرة هو تحديد من يجب أن يمتلك مبادرات البيانات الضخمة التي تنتشر على المنظمة بأكملها.من الصعب العمل مع البيانات الضخمة باستخدام معظم أنظمة إدارة قواعد البيانات العلائقية وإحصائيات سطح المكتب وحزم المحاكاة، حيث يتطلب الأمر بدلاً من ذلك "برامج متوازية واسعة النطاق تعمل على عشرات أو مئات أو حتي آلاف الخوادم". وما يُعتبر "بيانات ضخمة" يختلف باختلاف قدرات المنظمة التي تقوم بإدارة المجموعة، وعلي قدرات التطبيقات التي تستخدم بشكل تقليدي لمعالجة وتحليل مجموعة البيانات في النطاق الخاص بها. "فبالنسبة لبعض المنظمات، ربما تؤدي مواجهة مئات الغيغا بايت من البيانات لأول مرة إلى إعادة النظر في خيارات إدارة البيانات. وبالنسبة للبعض الآخر، ربما يستغرق الأمر عشرات أو مئات تيرابايت من البيانات قبل أن يصبح حجم البيانات شأناً مهماً". (ar)
  • Le big data, littéralement les « grosses données », ou mégadonnées (recommandé), parfois appelées données massives, désignent des ensembles de données qui deviennent tellement volumineux qu'ils en deviennent difficiles à travailler avec des outils classiques de gestion de base de données ou de gestion de l'information. L’explosion quantitative (et souvent redondante) de la donnée numérique contraint à de nouvelles manières de voir et analyser le monde. De nouveaux ordres de grandeur concernent la capture, le stockage, la recherche, le partage, l'analyse et la visualisation des données. Les perspectives du traitement des big data sont énormes et en partie encore insoupçonnées ; on évoque souvent de nouvelles possibilités d'exploration de l'information diffusée par les médias, de connaissance et d'évaluation, d'analyse tendancielle et prospective (climatiques, environnementales ou encore sociopolitiques, etc.) et de gestion des risques (commerciaux, assuranciels, industriels, naturels) et de phénomènes religieux, culturels, politiques, mais aussi en termes de génomique ou métagénomique, pour la médecine (compréhension du fonctionnement du cerveau, épidémiologie, écoépidémiologie...), la météorologie et l'adaptation aux changements climatiques, la gestion de réseaux énergétiques complexes (via les smartgrids ou un futur « internet de l'énergie »), l'écologie (fonctionnement et dysfonctionnement des réseaux écologiques, des réseaux trophiques avec le GBIF par exemple), ou encore la sécurité et la lutte contre la criminalité. La multiplicité de ces applications laisse d'ailleurs déjà poindre un véritable écosystème économique impliquant, d'ores et déjà, les plus gros joueurs du secteur des technologies de l'information. Certains[Qui ?] supposent que le big data pourrait aider les entreprises à réduire leurs risques et faciliter la prise de décision, ou créer la différence grâce à l'analyse prédictive et une « expérience client » plus personnalisée et contextualisée[réf. nécessaire]. Divers experts, grandes institutions (comme le MIT aux États-Unis), administrations et spécialistes sur le terrain des technologies ou des usages considèrent le phénomène big data comme l'un des grands défis informatiques de la décennie 2010-2020 et en ont fait une de leurs nouvelles priorités de recherche et développement. (fr)
  • Big Data [ˈbɪɡ ˈdeɪtə] (von englisch big „groß“ und data „Daten“) bezeichnet Datenmengen, die sind, um sie mit manuellen und klassischen Methoden der Datenverarbeitung auszuwerten. Der traditionellere Begriff im Deutschen ist Massendaten. Big Data ist häufig der Sammelbegriff für digitale Technologien, die in technischer Hinsicht für die neue Ära digitaler Kommunikation und Verarbeitung und in sozialer Hinsicht für den gesellschaftlichen Umbruch verantwortlich gemacht werden. Big Data steht grundsätzlich für große digitale Datenmengen, aber auch für die Analyse und Auswertung. In der Definition von Big Data bezieht sich das "Big" auf auf die drei Dimensionen "volume" (Umfang, Datenvolumen), "velocity" (geschwindigkeit, mit der die Datenmengen generiert und transferiert werden)und "variety" (Bandbreite der Datentypen und -quellen). Erweitert wird diese Definition um die zwei V's "value" und "validity", welche für den unternehmerischen Mehrwert und die Sicherstellung der Datenqualität stehen. Der Begriff „Big Data“ unterliegt als Schlagwort einem kontinuierlichen Wandel; so wird mit Big Data ergänzend auch oft der Komplex der Technologien beschrieben, die zum Sammeln und Auswerten dieser Datenmengen verwendet werden.Die gesammelten Daten können aus verschiedensten Quellen stammen: Big Data kann auch Bereiche umfassen, die bisher als privat galten. Der Wunsch der Industrie und bestimmter Behörden, möglichst freien Zugriff auf diese Daten zu erhalten, sie besser analysieren zu können und die gewonnenen Erkenntnisse zu nutzen, gerät dabei unweigerlich in Konflikt mit geschützten Persönlichkeitsrechten des Einzelnen. Ein Ausweg ist allein durch zu erreichen. Klassische Anwender von Methoden des Big Data sind die Provider sozialer Netzwerke und von Suchmaschinen. Die Analyse, Erfassung und Verarbeitung von großen Datenmengen ist heute in vielen Bereichen alltäglich. Datenmengen dienen im Allgemeinen der Umsetzung von Unternehmenszielen oder zur staatlichen Sicherheit. Bisher haben vor allem große Branchen, Unternehmen und Anwendungsbereiche der Wirtschaft, Marktforschung, Vertriebs- und Servicesteuerung, Medizin, Verwaltung und Nachrichtendienste die digitalen Methoden der Datensammlung für sich genutzt. Die erfassten daten sollen weiterentwickelt und nutzenbringend eingesetzt werden. Die Erhebung der Daten dient meistens für konzernorientierte Geschäftsmodelle, sowie Trendforschung in den sozialen Medien und Werbeanalysen, um zukunftsweisende und gewinnbringende Entwicklungen zu erkennen und in diese Prognosen zu investieren. (de)
  • El Big Data o Datos masivos es un concepto que hace referencia al almacenamiento de grandes cantidades de datos y a los procedimientos usados para encontrar patrones repetitivos dentro de esos datos. El fenómeno del Big Data también es llamado datos a gran escala. En los textos científicos en español con frecuencia se usa directamente el término en inglés Big Data, tal como aparece en el ensayo seminal de Viktor Schönberger Big data: La revolución de los datos masivos. La disciplina dedicada a los datos masivos se enmarca en el sector de las tecnologías de la información y la comunicación. Esta disciplina se ocupa de todas las actividades relacionadas con los sistemas que manipulan grandes conjuntos de datos. Las dificultades más habituales vinculadas a la gestión de estas cantidades de datos se centran en la recolección y el almacenamiento, búsqueda, compartición, análisis, y visualización. La tendencia a manipular enormes cantidades de datos se debe a la necesidad en muchos casos de incluir dicha información para la creación de informes estadísticos y modelos predictivos utilizados en diversas materias, como los análisis de negocio, publicitarios, los datos de enfermedades infecciosas, el espionaje y seguimiento a la población o la lucha contra el crimen organizado. El límite superior de procesamiento ha ido creciendo a lo largo de los años. De esta forma, los límites fijados en 2008 rondaban el orden de petabytes a zettabytes de datos. Los científicos con cierta regularidad encuentran limites en el análisis debido a la gran cantidad de datos en ciertas áreas, tales como la meteorología, la genómica, la conectómica, las complejas simulaciones de procesos físicos y las investigaciones relacionadas con los procesos biológicos y ambientales, Las limitaciones también afectan a los motores de búsqueda en internet, a los sistemas finanzas y a la informática de negocios. Los data sets crecen en volumen debido en parte a la recolección masiva de información procedente de los sensores inalámbricos y los dispositivos móviles (por ejemplo las VANETs), del constante crecimiento de los históricos de aplicaciones (por ejemplo de los logs), cámaras (sistemas de teledetección), micrófonos, lectores de radio-frequency identification. La capacidad tecnológica per-cápita a nivel mundial para almacenar datos se dobla aproximadamente cada cuarenta meses desde los años ochenta. Se estima que en 2012 cada día fueron creados cerca de 2,5 trillones de bytes de datos (del inglés quintillion, 2.5×1018). (es)
  • Big data è il termine usato per descrivere una raccolta di dati così estesa in termini di volume, velocità e varietà da richiedere tecnologie e metodi analitici specifici per l'estrazione di valore. Il progressivo aumento della dimensione dei dataset è legato alla necessità di analisi su un unico insieme di dati, con l'obiettivo di estrarre informazioni aggiuntive rispetto a quelle che si potrebbero ottenere analizzando piccole serie, con la stessa quantità totale di dati. Ad esempio, l'analisi per sondare gli "umori" dei mercati e del commercio, e quindi del trend complessivo della società e del fiume di informazioni che viaggiano e transitano attraverso Internet. Big data rappresenta anche l'interrelazione di dati provenienti potenzialmente da fonti eterogenee, quindi non soltanto i dati strutturati, come i database, ma anche non strutturati, come immagini, email, dati GPS, informazioni prese dai social network. Con i big data la mole dei dati è dell'ordine degli Zettabyte, ovvero miliardi di Terabyte. Quindi si richiede una potenza di calcolo parallelo e massivo con strumenti dedicati eseguiti su decine, centinaia o anche migliaia di server. (it)
  • ビッグデータ (英: big data)とは、市販されているデータベース管理ツールや従来のデータ処理アプリケーションで処理することが困難なほど巨大で複雑なデータ集合の集積物を表す用語である。その技術的な課題には収集、取捨選択、保管、検索、共有、転送、解析、可視化が含まれる。大規模データ集合の傾向をつかむことは、関連データの1集合の分析から得られる付加的情報を、別の同じデータ量を持つ小規模データ集合と比較することにより行われ、「ビジネスの傾向の発見、研究の品質決定、疾病予防、 法的引用のリンク 、犯罪防止、リアルタイムの道路交通状況判断」との相関の発見が可能になる。 「ビッグデータ」という用語は、データマイニングなどでふつうに使われてきた単語だが、2010年代に入ってある種のトレンドを示すキーワードとして、一般の新聞・雑誌などでも広く取り上げられるようになってきた。 2012年現在妥当な時間内に処理することが可能なデータ集合のサイズの制限は、エクサバイトのオーダーのデータである。科学者が大規模なデータ集合による制限に遭遇することは、しばしば発生し、その分野にはゲノミクス、気象学、コネクトミクス、複雑な物理シミュレーション、生物調査および環境調査が含まれる。同様の制限は インターネット検索、金融、ビジネスインフォマティクスにも影響を与える。 データ集合が増加するのは、情報収集モバイル装置、空間センサー技術(リモートセンシング)、ソフトウェアログ、カメラ、マイクロフォン、無線ID読取機、ワイヤレス・センサー・ネットワークの普及も1つの原因である。全世界での1人当たりの情報容量は1980年代以降40か月ごとに倍増し、2012年現在1日あたり毎日250京(2.5×1018)バイトのデータが作成された。大企業にとっての課題は、組織全体にまたがるビッグデータの主導権を誰が握るかということである。 ビッグデータは、大部分のリレーショナルデータベース管理システム、デスクトップ統計可視化パッケージでは処理が困難であり、その代わり、「数十台、数百台、ときには数千台ものサーバ上で動く大規模並列化ソフトウェア」が必要になる。何を「ビッグデータ」と考えるかは、データ集合を管理する組織の能力と、扱うデータの領域において従来分析に用いられてきたアプリケーションの能力に依存する。数百ギガバイトのデータに初めて直面してデータ管理の選択肢について再検討を始めた組織もある。また数十、数百テラバイトのデータになって初めて真剣に検討が必要になった組織もある。 (ja)
  • Em tecnologia da informação, o termo Big Data ("megadados" em português) refere-se a um grande conjunto de dados armazenados. Diz-se que o Big Data se baseia em 5 V's : velocidade, volume, variedade, veracidade e valor.' Big Data é um termo amplamente utilizado na atualidade para nomear conjuntos de dados muito grandes ou complexos, que os aplicativos de processamento de dados tradicionais ainda não conseguem lidar. Os desafios desta área incluem: análise, captura, curadoria de dados, pesquisa, compartilhamento, armazenamento, transferência, visualização e informações sobre privacidade dos dados. Este termo muitas vezes se refere ao uso de análise preditiva e de alguns outros métodos avançados para extrair valor de dados, e raramente a um determinado tamanho do conjunto de dados. Maior precisão nos dados pode levar à tomada de decisões com mais confiança. Além disso, melhores decisões podem significar maior eficiência operacional, redução de risco e redução de custos. A análise adequada de tais grandes conjuntos de dados permite encontrar novas correlações, como por exemplo: "tendências de negócios no local, prevenção de doenças, combate à criminalidade e assim por diante". Cientistas, empresários, profissionais de mídia e publicidade e Governos regularmente enfrentam dificuldades em áreas com grandes conjuntos de dados, incluindo pesquisa na Internet, finanças e informática de negócios. Os cientistas, por exemplo, encontram limitações no trabalho de e-Ciência, incluindo Meteorologia, Genômica, conectonomia, simulações físicas complexas, além de pesquisa biológica e ambiental. Tais conjuntos de dados crescem em tamanho em parte porque são cada vez mais frequentes e numerosos, uma vez que os dados atualmente podem ser reunidos por dispositivos baratos de informação, tais como equipamentos de sensoriamento móveis, aéreos (sensoriamento remoto), logs de software, câmeras, microfones, leitor (RFID) de rádio-frequência de identificação e redes de sensores sem fio. Desta forma, a capacidade per-capita tecnológico do mundo para armazenar informações praticamente tem dobrado a cada 40 meses, desde a década de 1980. A partir de 2012, foram criados a cada dia 2,5 hexabytes (2,5 × 1018) de dados. O desafio atual para as grandes empresas é determinar quem deve possuir grandes iniciativas de dados que atravessem toda a organização. Sistemas de gerenciamento de banco de dados relacional, estatísticas da área de trabalho e pacotes de visualização, muitas vezes têm dificuldade em lidar com grandes volumes de dados, pois isto requer o trabalho de "software paralelo, rodando em dezenas, centenas ou até mesmo milhares de servidores". O que é considerado "Big Data" varia de acordo com as capacidades dos usuários e suas ferramentas. Assim, o que é considerado "grande" em um ano provavelmente se tornará usual nos anos posteriores. "Para algumas organizações, que têm acesso a centenas de gigabytes de dados pela primeira vez, isto pode desencadear uma necessidade de se reconsiderar as opções de gerenciamento de dados. Desta forma, na atualidade "o volume dos dados armazenados ou acessados torna-se uma consideração importante." (pt)
  • Men spreekt van big data wanneer men werkt met een of meer datasets die te groot zijn om met reguliere databasemanagementsystemen onderhouden te worden. Big data spelen een steeds grotere rol. De hoeveelheid data die opgeslagen wordt, groeit exponentieel. Dit komt doordat consumenten zelf steeds meer data opslaan in de vorm van bestanden, foto's en films (bijvoorbeeld op Facebook of YouTube) maar ook doordat er steeds meer apparaten zelf data verzamelen, opslaan en uitwisselen (het zogenaamde internet der dingen) en er steeds meer sensordata beschikbaar zijn. Niet alleen de opslag van deze hoeveelheden is een uitdaging. Ook het analyseren van deze data speelt een steeds grotere rol. Deze data bevatten immers een schat aan informatie voor marketingdoeleinden. (nl)
  • Big data – termin odnoszący się do dużych, zmiennych i różnorodnych zbiorów danych, których przetwarzanie i analiza jest trudna ale jednocześnie wartościowa, ponieważ może prowadzić do zdobycia nowej wiedzy. W praktyce pojęcie dużego zbioru danych jest względne i oznacza sytuację, gdy zbioru nie da się przetwarzać przy użyciu trywialnych, powszechnie dostępnych metod. W zależności od branży i stopnia złożoności algorytmu może to oznaczać rozmiar terabajtów lub petabajtów (np. analiza zderzeń cząstek elementarnych w fizyce wysokich energii), jednak w innych zastosowaniach będą to już megabajty bądź gigabajty (np. porównywanie billingów telefonicznych w telekomunikacji). Big data ma zastosowanie wszędzie tam, gdzie dużej ilości danych cyfrowych towarzyszy potrzeba zdobywania nowych informacji lub wiedzy. Szczególne znaczenie odgrywa wzrost dostępności Internetu oraz usług świadczonych drogą elektroniczną, które w naturalny sposób są przystosowane do wykorzystywania baz danych.W 2001 roku META Group (obecnie Gartner) opublikowała raport, który opisuje big data w modelu 3V: Model ten uzupełniony został o kolejną składową - o ocenę (weryfikację), (ang. value) posiadanych danych - dochodząc do modelu 4V. Zastosowanie modelu 4V w polskiej wersji 4W przedstawia się następująco: W roku 2012 Gartner uzupełnił podaną wcześniej definicję, wskazując, iż „big data" to zbiory informacji o dużej objętości, dużej zmienności lub dużej różnorodności, które wymagają nowych form przetwarzania w celu wspomagania podejmowania decyzji, odkrywania nowych zjawisk oraz optymalizacji procesów”. (pl)
  • 大數據(英语:Big data 或 Megadata),或稱巨量資料、海量資料、大资料,指的是所涉及的資料量規模巨大到無法透過人工,在合理時間內達到擷取、管理、處理、並整理成為人類所能解讀的形式的資訊。在總資料量相同的情況下,與個別分析獨立的小型資料集(Data set)相比,將各個小型資料集合併後進行分析可得出許多額外的資訊和資料關聯性,可用來察覺商業趨勢、判定研究品質、避免疾病擴散、打擊犯罪或測定即時交通路況等;這樣的用途正是大型資料集盛行的原因。截至2012年 (2012-Missing required parameter 1=month!),技術上可在合理時間內分析處理的資料集大小單位為艾位元組(exabytes)。在許多領域,由於資料集過度龐大,科學家經常在分析處理上遭遇限制和阻礙;這些領域包括氣象學、基因組學、神經網路體學、複雜的物理模擬,以及生物和環境研究。這樣的限制也對网络搜索、金融與經濟資訊學造成影響。資料集大小增長的部分原因來自於資訊持續從各種來源被廣泛收集,這些來源包括搭載感測設備的行動裝置、高空感測科技(遥感)、軟體記錄、相機、麥克風、無線射頻辨識(RFID)和無線感測網路。自1980年代起,現代科技可儲存資料的容量每40個月即增加一倍;截至2012年 (2012-Missing required parameter 1=month!),全世界每天產生2.5艾位元組(2.5×1018字节)的資料。大數據幾乎無法使用大多數的資料庫管理系統處理,而必須使用「在數十、數百甚至數千台伺服器上同時平行運行的軟體」。大數據的定義取決於持有資料組的機構之能力,以及其平常用來處理分析資料的軟體之能力。「對某些組織來說,第一次面對數百GB的資料集可能讓他們需要重新思考資料管理的選項。對於其他組織來說,資料集可能需要達到數十或數百兆位元組才會對他們造成困擾。」随着大數據被越来越多的提及,有些人惊呼大數據时代已经到来了,2012年《纽约时报》的一篇专栏中写到,“大數據”时代已经降临,在商业、经济及其他领域中,决策将日益基于數據和分析而作出,而并非基于经验和直觉。但是并不是所有人都对big data感兴趣,有些人甚至认为这是商学院或咨询公司用来哗众取宠的buzzword,看起来很新颖,但只是把传统重新包装,之前在学术研究或者政策决策中也有海量数据的支撑,大数据并不是一件新兴事物。大数据时代的来临带来无数的机遇,但是与此同时个人或机构的隐私权也极有可能受到冲击,大數據包含各种个人信息数据,现有的隐私保护法律或政策无力解决这些新出现的问题。有人提出,大数据时代,个人是否拥有“被遗忘权”,被遗忘权即是否有权利要求数据商不保留自己的某些信息,大数据时代信息为某些互联网巨头所控制,但是数据商收集任何数据未必都获得用户的许可,其对数据的控制权不具有合法性。2014年5月13日欧盟法院就“被遗忘权”(right to be forgotten)一案作出裁定,判决谷歌应根据用户请求删除不完整的、无关紧要的、不相关的数据以保证数据不出现在搜索结果中。这说明在大数据时代,加强对用户个人权利的尊重才是时勢所趋的潮流。 (zh)
  • Большие данные (англ. big data) в информационных технологиях — серия подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети, сформировавшихся в конце 2000-х годов, альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence. В данную серию включают средства массово-параллельной обработки неопределённо структурированных данных, прежде всего, решениями категории NoSQL, алгоритмами MapReduce, программными каркасами и библиотеками проекта Hadoop.В качестве определяющих характеристик для больших данных отмечают «три V»: объём (англ. volume, в смысле величины физического объёма), скорость (англ. velocity в смыслах как скорости прироста, так и необходимости высокоскоростной обработки и получения результатов), многообразие (англ. variety, в смысле возможности одновременной обработки различных типов структурированных и полуструктурированных данных). (ru)
  • Big data is a term for data sets that are so large or complex that traditional data processing applications are inadequate. Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, querying and information privacy. The term often refers simply to the use of predictive analytics or certain other advanced methods to extract value from data, and seldom to a particular size of data set. Accuracy in big data may lead to more confident decision making, and better decisions can result in greater operational efficiency, cost reduction and reduced risk. Analysis of data sets can find new correlations to "spot business trends, prevent diseases, combat crime and so on." Scientists, business executives, practitioners of medicine, advertising and governments alike regularly meet difficulties with large data sets in areas including Internet search, finance and business informatics. Scientists encounter limitations in e-Science work, including meteorology, genomics, connectomics, complex physics simulations, biology and environmental research. Data sets are growing rapidly in part because they are increasingly gathered by cheap and numerous information-sensing mobile devices, aerial (remote sensing), software logs, cameras, microphones, radio-frequency identification (RFID) readers and wireless sensor networks. The world's technological per-capita capacity to store information has roughly doubled every 40 months since the 1980s; as of 2012, every day 2.5 exabytes (2.5×1018) of data are created. One question for large enterprises is determining who should own big data initiatives that affect the entire organization. Relational database management systems and desktop statistics and visualization packages often have difficulty handling big data. The work instead requires "massively parallel software running on tens, hundreds, or even thousands of servers". What is considered "big data" varies depending on the capabilities of the users and their tools, and expanding capabilities make big data a moving target. "For some organizations, facing hundreds of gigabytes of data for the first time may trigger a need to reconsider data management options. For others, it may take tens or hundreds of terabytes before data size becomes a significant consideration." (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 27051151 (xsd:integer)
dbo:wikiPageRevisionID
  • 708234113 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • Men spreekt van big data wanneer men werkt met een of meer datasets die te groot zijn om met reguliere databasemanagementsystemen onderhouden te worden. Big data spelen een steeds grotere rol. De hoeveelheid data die opgeslagen wordt, groeit exponentieel. Dit komt doordat consumenten zelf steeds meer data opslaan in de vorm van bestanden, foto's en films (bijvoorbeeld op Facebook of YouTube) maar ook doordat er steeds meer apparaten zelf data verzamelen, opslaan en uitwisselen (het zogenaamde internet der dingen) en er steeds meer sensordata beschikbaar zijn. Niet alleen de opslag van deze hoeveelheden is een uitdaging. Ook het analyseren van deze data speelt een steeds grotere rol. Deze data bevatten immers een schat aan informatie voor marketingdoeleinden. (nl)
  • 大數據(英语:Big data 或 Megadata),或稱巨量資料、海量資料、大资料,指的是所涉及的資料量規模巨大到無法透過人工,在合理時間內達到擷取、管理、處理、並整理成為人類所能解讀的形式的資訊。在總資料量相同的情況下,與個別分析獨立的小型資料集(Data set)相比,將各個小型資料集合併後進行分析可得出許多額外的資訊和資料關聯性,可用來察覺商業趨勢、判定研究品質、避免疾病擴散、打擊犯罪或測定即時交通路況等;這樣的用途正是大型資料集盛行的原因。截至2012年 (2012-Missing required parameter 1=month!),技術上可在合理時間內分析處理的資料集大小單位為艾位元組(exabytes)。在許多領域,由於資料集過度龐大,科學家經常在分析處理上遭遇限制和阻礙;這些領域包括氣象學、基因組學、神經網路體學、複雜的物理模擬,以及生物和環境研究。這樣的限制也對网络搜索、金融與經濟資訊學造成影響。資料集大小增長的部分原因來自於資訊持續從各種來源被廣泛收集,這些來源包括搭載感測設備的行動裝置、高空感測科技(遥感)、軟體記錄、相機、麥克風、無線射頻辨識(RFID)和無線感測網路。自1980年代起,現代科技可儲存資料的容量每40個月即增加一倍;截至2012年 (2012-Missing required parameter 1=month!),全世界每天產生2.5艾位元組(2.5×1018字节)的資料。大數據幾乎無法使用大多數的資料庫管理系統處理,而必須使用「在數十、數百甚至數千台伺服器上同時平行運行的軟體」。大數據的定義取決於持有資料組的機構之能力,以及其平常用來處理分析資料的軟體之能力。「對某些組織來說,第一次面對數百GB的資料集可能讓他們需要重新思考資料管理的選項。對於其他組織來說,資料集可能需要達到數十或數百兆位元組才會對他們造成困擾。」随着大數據被越来越多的提及,有些人惊呼大數據时代已经到来了,2012年《纽约时报》的一篇专栏中写到,“大數據”时代已经降临,在商业、经济及其他领域中,决策将日益基于數據和分析而作出,而并非基于经验和直觉。但是并不是所有人都对big data感兴趣,有些人甚至认为这是商学院或咨询公司用来哗众取宠的buzzword,看起来很新颖,但只是把传统重新包装,之前在学术研究或者政策决策中也有海量数据的支撑,大数据并不是一件新兴事物。大数据时代的来临带来无数的机遇,但是与此同时个人或机构的隐私权也极有可能受到冲击,大數據包含各种个人信息数据,现有的隐私保护法律或政策无力解决这些新出现的问题。有人提出,大数据时代,个人是否拥有“被遗忘权”,被遗忘权即是否有权利要求数据商不保留自己的某些信息,大数据时代信息为某些互联网巨头所控制,但是数据商收集任何数据未必都获得用户的许可,其对数据的控制权不具有合法性。2014年5月13日欧盟法院就“被遗忘权”(right to be forgotten)一案作出裁定,判决谷歌应根据用户请求删除不完整的、无关紧要的、不相关的数据以保证数据不出现在搜索结果中。这说明在大数据时代,加强对用户个人权利的尊重才是时勢所趋的潮流。 (zh)
  • البيانات الضخمة هي عبارة عن مجموعة من مجموعة البيانات الضخمة جداً والمعقدة لدرجة أنه يُصبح من الصعب معالجتها باستخدام أداة واحدة فقط من أدوات إدارة قواعد البيانات أو باستخدام تطبيقات معالجة البيانات التقليدية. حيث تشمل التحديات الالتقاط، والمدة، والتخزين، والبحث، والمشاركة، والنقل، والتحليل والتصور. (ar)
  • Big Data [ˈbɪɡ ˈdeɪtə] (von englisch big „groß“ und data „Daten“) bezeichnet Datenmengen, diesind, um sie mit manuellen und klassischen Methoden der Datenverarbeitung auszuwerten. Der traditionellere Begriff im Deutschen ist Massendaten. Big Data ist häufig der Sammelbegriff für digitale Technologien, die in technischer Hinsicht für die neue Ära digitaler Kommunikation und Verarbeitung und in sozialer Hinsicht für den gesellschaftlichen Umbruch verantwortlich gemacht werden. Big Data steht grundsätzlich für große digitale Datenmengen, aber auch für die Analyse und Auswertung. (de)
  • El Big Data o Datos masivos es un concepto que hace referencia al almacenamiento de grandes cantidades de datos y a los procedimientos usados para encontrar patrones repetitivos dentro de esos datos. El fenómeno del Big Data también es llamado datos a gran escala. En los textos científicos en español con frecuencia se usa directamente el término en inglés Big Data, tal como aparece en el ensayo seminal de Viktor Schönberger Big data: La revolución de los datos masivos. (es)
  • Big data è il termine usato per descrivere una raccolta di dati così estesa in termini di volume, velocità e varietà da richiedere tecnologie e metodi analitici specifici per l'estrazione di valore.Il progressivo aumento della dimensione dei dataset è legato alla necessità di analisi su un unico insieme di dati, con l'obiettivo di estrarre informazioni aggiuntive rispetto a quelle che si potrebbero ottenere analizzando piccole serie, con la stessa quantità totale di dati. Ad esempio, l'analisi per sondare gli "umori" dei mercati e del commercio, e quindi del trend complessivo della società e del fiume di informazioni che viaggiano e transitano attraverso Internet. (it)
  • Le big data, littéralement les « grosses données », ou mégadonnées (recommandé), parfois appelées données massives, désignent des ensembles de données qui deviennent tellement volumineux qu'ils en deviennent difficiles à travailler avec des outils classiques de gestion de base de données ou de gestion de l'information.Certains[Qui ?] supposent que le big data pourrait aider les entreprises à réduire leurs risques et faciliter la prise de décision, ou créer la différence grâce à l'analyse prédictive et une « expérience client » plus personnalisée et contextualisée[réf. nécessaire]. (fr)
  • ビッグデータ (英: big data)とは、市販されているデータベース管理ツールや従来のデータ処理アプリケーションで処理することが困難なほど巨大で複雑なデータ集合の集積物を表す用語である。その技術的な課題には収集、取捨選択、保管、検索、共有、転送、解析、可視化が含まれる。大規模データ集合の傾向をつかむことは、関連データの1集合の分析から得られる付加的情報を、別の同じデータ量を持つ小規模データ集合と比較することにより行われ、「ビジネスの傾向の発見、研究の品質決定、疾病予防、 法的引用のリンク 、犯罪防止、リアルタイムの道路交通状況判断」との相関の発見が可能になる。「ビッグデータ」という用語は、データマイニングなどでふつうに使われてきた単語だが、2010年代に入ってある種のトレンドを示すキーワードとして、一般の新聞・雑誌などでも広く取り上げられるようになってきた。 (ja)
  • Big data – termin odnoszący się do dużych, zmiennych i różnorodnych zbiorów danych, których przetwarzanie i analiza jest trudna ale jednocześnie wartościowa, ponieważ może prowadzić do zdobycia nowej wiedzy. W praktyce pojęcie dużego zbioru danych jest względne i oznacza sytuację, gdy zbioru nie da się przetwarzać przy użyciu trywialnych, powszechnie dostępnych metod. W zależności od branży i stopnia złożoności algorytmu może to oznaczać rozmiar terabajtów lub petabajtów (np. analiza zderzeń cząstek elementarnych w fizyce wysokich energii), jednak w innych zastosowaniach będą to już megabajty bądź gigabajty (np. porównywanie billingów telefonicznych w telekomunikacji). Big data ma zastosowanie wszędzie tam, gdzie dużej ilości danych cyfrowych towarzyszy potrzeba zdobywania nowych informacj (pl)
  • Em tecnologia da informação, o termo Big Data ("megadados" em português) refere-se a um grande conjunto de dados armazenados. Diz-se que o Big Data se baseia em 5 V's : velocidade, volume, variedade, veracidade e valor.' (pt)
  • Большие данные (англ. (ru)
  • Big data is a term for data sets that are so large or complex that traditional data processing applications are inadequate. Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, querying and information privacy. The term often refers simply to the use of predictive analytics or certain other advanced methods to extract value from data, and seldom to a particular size of data set. Accuracy in big data may lead to more confident decision making, and better decisions can result in greater operational efficiency, cost reduction and reduced risk. (en)
rdfs:label
  • Big data (en)
  • بيانات ضخمة (ar)
  • Big Data (de)
  • Big data (es)
  • Big data (fr)
  • Big data (it)
  • ビッグデータ (ja)
  • Big data (nl)
  • Big data (pl)
  • 大數據 (zh)
  • Большие данные (ru)
  • Big data (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:field of
is dbo:genre of
is dbo:industry of
is dbo:knownFor of
is dbo:product of
is dbo:service of
is dbo:wikiPageRedirects of
is dbp:field of
is dbp:fields of
is dbp:genre of
is dbp:industry of
is dbp:knownFor of
is dbp:services of
is rdfs:seeAlso of
is foaf:primaryTopic of