In probability theory and statistics, Bayes’ theorem (alternatively Bayes’ law or Bayes' rule) describes the probability of an event, based on conditions that might be related to the event. For example, if cancer is related to age, then, using Bayes’ theorem, a person’s age can be used to more accurately assess the probability that they have cancer.

Property Value
dbo:abstract
  • In probability theory and statistics, Bayes’ theorem (alternatively Bayes’ law or Bayes' rule) describes the probability of an event, based on conditions that might be related to the event. For example, if cancer is related to age, then, using Bayes’ theorem, a person’s age can be used to more accurately assess the probability that they have cancer. One of the many applications of Bayes’ theorem is Bayesian inference, a particular approach to statistical inference. When applied, the probabilities involved in Bayes’ theorem may have different probability interpretations. With the Bayesian probability interpretation the theorem expresses how a subjective degree of belief should rationally change to account for evidence. Bayesian inference is fundamental to Bayesian statistics. Bayes’ theorem is named after Rev. Thomas Bayes (/ˈbeɪz/; 1701–1761), who first provided an equation that allows new evidence to update beliefs. It was further developed by Pierre-Simon Laplace, who first published the modern formulation in his 1812 “Théorie analytique des probabilités.” Sir Harold Jeffreys put Bayes’ algorithm and Laplace's formulation on an axiomatic basis. Jeffreys wrote that Bayes’ theorem “is to the theory of probability what the Pythagorean theorem is to geometry.” (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) مبرهنة بايز هي إحدى نتائج نظرية الاحتمالات الهامة التي تعطي التوزيع الاحتمالي الشرطي للمتغير العشوائي A مع العلم بالمتغير العشوائي B, وذلك بدلالة التوزيع الاحتمالي الشرطي للمتغير العشوائي B مع العلم ب A والتوزع الاحتمالي للمتغيرين A وB. أخذت المبرهنة هذا الإسم نسبة إلى توماس بايز الذي توصل الى النتائج الأولية التي أستخدمت فيما بعد للحصول على المبرهنة بشكلها النهائي، فقد قام الرياضي الفرنسي لابلاس بإستخراج المعادلات المبنية على أساس الإحتمالات وهو الشكل النهائي الذي إنتشرت فيه هذه المبرهنة بعد ان قام بايز بكتابتها بالتكاملات. (ar)
  • Der Satz von Bayes ist ein mathematischer Satz aus der Wahrscheinlichkeitstheorie, der die Berechnung bedingter Wahrscheinlichkeiten beschreibt. Er ist nach dem englischen Mathematiker Thomas Bayes benannt, der ihn erstmals in einem Spezialfall in der 1763 posthum veröffentlichten Abhandlung An Essay Towards Solving a Problem in the Doctrine of Chances beschrieb. Er wird auch Formel von Bayes oder (als Lehnübersetzung) Bayes-Theorem genannt. (de)
  • El teorema de Bayes, en la teoría de la probabilidad, es una proposición planteada por el filósofo inglés Thomas Bayes (1702-1761) en 1763, que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A. En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir, que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza. Muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados. (es)
  • Le théorème de Bayes est un résultat de base en théorie des probabilités, issu des travaux du révérend Thomas Bayes et retrouvé ensuite indépendamment par Laplace. Dans son unique article, Bayes cherchait à déterminer ce que l’on appellerait actuellement la distribution a posteriori de la probabilité d’une loi binomiale. Ses travaux ont été édités et présentés à titre posthume (1763) par son ami Richard Price dans Un essai pour résoudre un problème dans la théorie des risques (An Essay towards solving a Problem in the Doctrine of Chances). Les résultats de Bayes ont été redécouverts et étendus par le mathématicien français Laplace dans un essai de 1774, lequel n’était apparemment pas au fait du travail de Bayes. Le résultat principal obtenu par Bayes est le suivant : en considérant une distribution uniforme du paramètre binomial p et une observation d'une loi binomiale , où m est donc le nombre d’issues positives observées et n le nombre d’échecs observés, la probabilité que p soit entre a et b sachant vaut : Ses résultats préliminaires, impliquent le résultat que l’on appelle théorème de Bayes (énoncé plus bas) mais il ne semble pas que Bayes se soit concentré ou ait insisté sur ce résultat. Ce qui est « bayésien » (au sens actuel du mot) dans ce résultat, c’est que Bayes ait présenté cela comme une probabilité sur le paramètre p. Cela revient à dire qu’on peut déterminer, non seulement des probabilités à partir d’observations issues d’une expérience, mais aussi les paramètres relatifs à ces probabilités. C’est le même type de calcul analytique qui permet de déterminer par inférence les deux. En revanche, si l’on s'en tient à une interprétation fréquentiste (en), on est censé ne pas considérer de probabilité de distribution du paramètre p et en conséquence, on ne peut raisonner sur p qu’avec un raisonnement d’inférence non-probabiliste. (fr)
  • Il teorema di Bayes (conosciuto anche come formula di Bayes o teorema della probabilità delle cause), proposto da Thomas Bayes, deriva da due teoremi fondamentali delle probabilità:il teorema della probabilità composta e il teorema della probabilità assoluta. Viene impiegato per calcolare la probabilità di una causa che ha scatenato l'evento verificato. Per esempio si può calcolare la probabilità che una certa persona soffra della malattia per cui ha eseguito il test diagnostico (nel caso in cui questo sia risultato negativo) o viceversa non sia affetta da tale malattia (nel caso in cui il test sia risultato positivo), conoscendo la frequenza con cui si presenta la malattia e la percentuale di efficacia del test diagnostico.Formalmente il teorema di Bayes è valido in tutte le interpretazioni della probabilità. In ogni caso, l'importanza di questo teorema per la statistica è tale che la divisione tra le due scuole (statistica bayesiana e statistica frequentista) nasce dall'interpretazione che si dà al teorema stesso. (it)
  • Het theorema van Bayes (ook regel van Bayes of stelling van Bayes) is een regel uit de kansrekening die de kans dat een bepaalde mogelijkheid ten grondslag ligt aan een gebeurtenis uitdrukt in de voorwaardelijke kansen op de gebeurtenis bij elk van de mogelijkheden. Het theorema is weliswaar genoemd naar Thomas Bayes, maar vrijwel zeker niet door hem geformuleerd, maar door Pierre-Simon Laplace, die vrij zeker inspiratie opdeed bij een postuum gepubliceerd artikel van Bayes uit 1763. Het theorema komt voor in de Théorie analytique des probabilités van Laplace uit 1812. Het theorema wordt ook wel omkeerformule genoemd, omdat het de "omgekeerde" voorwaardelijke kans berekent. In formulevorm ziet het theorema er als volgt uit: De gebeurtenis B kan plaatsvinden onder de omstandigheid dat A optreedt, maar ook als A niet optreedt. Uitgaande van de voorwaardelijke kansen op B gegeven de mogelijkheden wel A en niet A, wordt de kans bepaald dat, uitgaande van de situatie dat B daadwerkelijk gebeurd is, het de omstandigheid A was waaronder B is opgetreden. De formule is een directe toepassing van de definitie van voorwaardelijke kans en de wet van de totale kans die in dit geval luidt: (nl)
  • ベイズの定理(ベイズのていり、英: Bayes' theorem)とは、条件付き確率に関して成り立つ定理で、トーマス・ベイズによって示された。 なおベイズ統計学においては基礎として利用され、いくつかの未観測要素を含む推論等に応用される。 (ja)
  • Twierdzenie Bayesa (od nazwiska Thomasa Bayesa) to twierdzenie teorii prawdopodobieństwa, wiążące prawdopodobieństwa warunkowe zdarzeń oraz . Na przykład jeśli jest zdarzeniem „u pacjenta występuje wysoka gorączka”, a jest zdarzeniem „pacjent ma grypę”, twierdzenie Bayesa pozwala przeliczyć znany odsetek gorączkujących wśród chorych na grypę i znane odsetki gorączkujących i chorych na grypę w całej populacji, na prawdopodobieństwo, że ktoś jest chory na grypę, gdy wiemy, że ma wysoką gorączkę . Twierdzenie stanowi podstawę teoretyczną sieci bayesowskich, stosowanych w eksploracji danych. (pl)
  • Em teoria da probabilidade o Teorema de Bayes mostra a relação entre uma probabilidade condicional e a sua inversa; por exemplo, a probabilidade de uma hipótese dada a observação de uma evidência e a probabilidade da evidência dada pela hipótese. Esse teorema representa uma das primeiras tentativas de modelar de forma matemática a inferencia estatística, feita por Thomas Bayes (pronunciado /ˈbeɪz/ ou "bays"). O teorema de Bayes é um corolário do teorema da probabilidade total que permite calcular a seguinte probabilidade: * Pr(A) e Pr(B) são as probabilidades a priori de A e B * Pr(B|A) e Pr(A|B) são as probabilidades a posteriori de B condicional a A e de A condicional a B respectivamente. A regra de Bayes mostra como alterar as probabilidades a priori tendo em conta novas evidências de forma a obter probabilidades a posteriori. Podemos aplicar o Teorema de Bayes com o jogo das três portas. Alguns preferem escrevê-lo na forma: A ideia principal é que a probabilidade de um evento A dado um evento B (e.g. a probabilidade de alguém ter câncer de mama sabendo, ou dado, que a mamografia deu positivo para o teste) depende não apenas do relacionamento entre os eventos A e B (i.e., a precisão, ou exatidão, da mamografia), mas também da probabilidade marginal (ou "probabilidade simples") da ocorrência de cada evento. Por exemplo, se as mamografias acertam em 95% dos testes, então 5% é a probabilidade de termos falso positivo ou falso negativo, ou uma mistura de falso positivo a falso. O teorema de Bayes nos permite calcular a probabilidade condicional de ter câncer de mama, dado uma mamografia positiva, para qualquer um desses casos. A probabilidade de uma mamografia positiva será diferente para cada um dos casos. No exemplo dado, há um ponto de grande importância prática que merece destaque: se a prevalência de mamografias resultado positivo para o câncer é, digamos, 5,0%, então a probabilidade condicional de que um indivíduo com um resultado positivo na verdade não tem câncer é bastante pequena, já que a probabilidade marginal deste tipo de câncer está mais perto de 1,0%. A probabilidade de um resultado positivo é, portanto, cinco vezes mais provável que a probabilidade de um câncer em si. Além disso, alguém pode deduzir que a probabilidade condicional que mamografias positivas realmente tenham câncer é de 20%. Isso poderia ser menor, se a probabilidade condicional que dado um câncer de mama, a mamografia sendo positiva não é de 100% (i.e. falso negativos). Isso serve para mostrar a utilidade do entendimento do teorema de Bayes. (pt)
  • Теорема Байеса (или формула Байеса) — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Другими словами, по формуле Байеса можно более точно пересчитать вероятность, взяв в расчет как ранее известную информацию, так и данные новых наблюдений. Формула Байеса может быть выведена из основных аксиом теории вероятностей, в частности из условной вероятности. Особенность теоремы Байеса заключается в том, что для её практического применения требуется большое количество расчетов, вычислений, поэтому байесовские оценки стали активно использовать только после революции в компьютерных и сетевых технологиях. При возникновении теоремы Байеса вероятности, используемые в теореме, подвергались целому ряду вероятностных интерпретаций. В одной из таких интерпретаций говорилось, что вывод формулы напрямую связан с применением особого подхода к статистическому анализу. Если использовать байесовскую интерпретацию вероятности, то теорема показывает, как личный уровень доверия может кардинально измениться вследствие количества наступивших событий. В этом заключаются выводы Байеса, которые стали основополагающими для байесовской статистики. Однако теорема используется не только в байесовском анализе, но и активно применяется для большого ряда других расчетов. Психологические эксперименты показали, что люди часто неверно оценивают вероятность события, на основе полученного опыта (апостериорная вероятность), поскольку игнорируют саму вероятность предположения (априорная вероятность). Поэтому правильный результат по формуле Байеса может сильно отличаться от интуитивно ожидаемого. Теорема Байеса названа в честь её автора Томаса Байеса (1702—1761) — английского математика и священника, который первым предложил использование теоремы для корректировки убеждений, основываясь на обновлённых данных. Его работа «An Essay towards solving a Problem in the Doctrine of Chances» впервые опубликована в 1763 году, через 2 года после смерти автора. До того, как посмертная работа Байеса была принята и прочитана в Королевском обществе, она была значительно отредактирована и обновлена Ричардом Прайсом. Однако эти идеи не предавались публичной огласке до тех пор, пока не были вновь открыты и развиты Лапласом, впервые опубликовавшим современную формулировку теоремы в своей книге 1812 года «Аналитическая теория вероятностей». Сэр Гарольд Джеффрис писал, что теорема Байеса «является основой теории вероятности, точно так же как и теорема Пифагора есть основа геометрии»1. (ru)
  • 贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。這個名稱來自於托马斯·贝叶斯。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。贝叶斯公式的用途在于通过己知三个概率函数推出第四个。它的内容是:在B出现的前提下,A出现的概率等于A和B都出现的概率除以B出现的概率。通过联系A与B,计算从一个事件产生另一事件的概率,即从结果上溯原。 作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,某个随机事件的概率该如何被赋值,有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本裡面的发生的个数来赋值概率;贝叶斯主义者则根据未知的命题来赋值概率。这样的理念导致贝叶斯主义者有更多的机会使用贝叶斯定理。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 49569 (xsd:integer)
dbo:wikiPageRevisionID
  • 743461231 (xsd:integer)
dbp:id
  • 1051 (xsd:integer)
  • p/b015380
dbp:title
  • Bayes formula
  • Bayes’ Theorem
  • Bayes’ theorem
dbp:urlname
  • BayesTheorem
dct:subject
rdf:type
rdfs:comment
  • Der Satz von Bayes ist ein mathematischer Satz aus der Wahrscheinlichkeitstheorie, der die Berechnung bedingter Wahrscheinlichkeiten beschreibt. Er ist nach dem englischen Mathematiker Thomas Bayes benannt, der ihn erstmals in einem Spezialfall in der 1763 posthum veröffentlichten Abhandlung An Essay Towards Solving a Problem in the Doctrine of Chances beschrieb. Er wird auch Formel von Bayes oder (als Lehnübersetzung) Bayes-Theorem genannt. (de)
  • ベイズの定理(ベイズのていり、英: Bayes' theorem)とは、条件付き確率に関して成り立つ定理で、トーマス・ベイズによって示された。 なおベイズ統計学においては基礎として利用され、いくつかの未観測要素を含む推論等に応用される。 (ja)
  • Twierdzenie Bayesa (od nazwiska Thomasa Bayesa) to twierdzenie teorii prawdopodobieństwa, wiążące prawdopodobieństwa warunkowe zdarzeń oraz . Na przykład jeśli jest zdarzeniem „u pacjenta występuje wysoka gorączka”, a jest zdarzeniem „pacjent ma grypę”, twierdzenie Bayesa pozwala przeliczyć znany odsetek gorączkujących wśród chorych na grypę i znane odsetki gorączkujących i chorych na grypę w całej populacji, na prawdopodobieństwo, że ktoś jest chory na grypę, gdy wiemy, że ma wysoką gorączkę . Twierdzenie stanowi podstawę teoretyczną sieci bayesowskich, stosowanych w eksploracji danych. (pl)
  • 贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。這個名稱來自於托马斯·贝叶斯。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。贝叶斯公式的用途在于通过己知三个概率函数推出第四个。它的内容是:在B出现的前提下,A出现的概率等于A和B都出现的概率除以B出现的概率。通过联系A与B,计算从一个事件产生另一事件的概率,即从结果上溯原。 作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,某个随机事件的概率该如何被赋值,有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本裡面的发生的个数来赋值概率;贝叶斯主义者则根据未知的命题来赋值概率。这样的理念导致贝叶斯主义者有更多的机会使用贝叶斯定理。 (zh)
  • In probability theory and statistics, Bayes’ theorem (alternatively Bayes’ law or Bayes' rule) describes the probability of an event, based on conditions that might be related to the event. For example, if cancer is related to age, then, using Bayes’ theorem, a person’s age can be used to more accurately assess the probability that they have cancer. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) مبرهنة بايز هي إحدى نتائج نظرية الاحتمالات الهامة التي تعطي التوزيع الاحتمالي الشرطي للمتغير العشوائي A مع العلم بالمتغير العشوائي B, وذلك بدلالة التوزيع الاحتمالي الشرطي للمتغير العشوائي B مع العلم ب A والتوزع الاحتمالي للمتغيرين A وB. (ar)
  • El teorema de Bayes, en la teoría de la probabilidad, es una proposición planteada por el filósofo inglés Thomas Bayes (1702-1761) en 1763, que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A. (es)
  • Le théorème de Bayes est un résultat de base en théorie des probabilités, issu des travaux du révérend Thomas Bayes et retrouvé ensuite indépendamment par Laplace. Dans son unique article, Bayes cherchait à déterminer ce que l’on appellerait actuellement la distribution a posteriori de la probabilité Le résultat principal obtenu par Bayes est le suivant : en considérant une distribution uniforme du paramètre binomial p et une observation d'une loi binomiale , où m est donc le nombre d’issues positives observées et n le nombre d’échecs observés, la probabilité que p soit entre a et b sachant (fr)
  • Il teorema di Bayes (conosciuto anche come formula di Bayes o teorema della probabilità delle cause), proposto da Thomas Bayes, deriva da due teoremi fondamentali delle probabilità:il teorema della probabilità composta e il teorema della probabilità assoluta. Viene impiegato per calcolare la probabilità di una causa che ha scatenato l'evento verificato. Per esempio si può calcolare la probabilità che una certa persona soffra della malattia per cui ha eseguito il test diagnostico (nel caso in cui questo sia risultato negativo) o viceversa non sia affetta da tale malattia (nel caso in cui il test sia risultato positivo), conoscendo la frequenza con cui si presenta la malattia e la percentuale di efficacia del test diagnostico.Formalmente il teorema di Bayes è valido in tutte le interpretazio (it)
  • Het theorema van Bayes (ook regel van Bayes of stelling van Bayes) is een regel uit de kansrekening die de kans dat een bepaalde mogelijkheid ten grondslag ligt aan een gebeurtenis uitdrukt in de voorwaardelijke kansen op de gebeurtenis bij elk van de mogelijkheden. Het theorema is weliswaar genoemd naar Thomas Bayes, maar vrijwel zeker niet door hem geformuleerd, maar door Pierre-Simon Laplace, die vrij zeker inspiratie opdeed bij een postuum gepubliceerd artikel van Bayes uit 1763. Het theorema komt voor in de Théorie analytique des probabilités van Laplace uit 1812. Het theorema wordt ook wel omkeerformule genoemd, omdat het de "omgekeerde" voorwaardelijke kans berekent. In formulevorm ziet het theorema er als volgt uit: (nl)
  • Em teoria da probabilidade o Teorema de Bayes mostra a relação entre uma probabilidade condicional e a sua inversa; por exemplo, a probabilidade de uma hipótese dada a observação de uma evidência e a probabilidade da evidência dada pela hipótese. Esse teorema representa uma das primeiras tentativas de modelar de forma matemática a inferencia estatística, feita por Thomas Bayes (pronunciado /ˈbeɪz/ ou "bays"). O teorema de Bayes é um corolário do teorema da probabilidade total que permite calcular a seguinte probabilidade: Podemos aplicar o Teorema de Bayes com o jogo das três portas. (pt)
  • Теорема Байеса (или формула Байеса) — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Другими словами, по формуле Байеса можно более точно пересчитать вероятность, взяв в расчет как ранее известную информацию, так и данные новых наблюдений. Формула Байеса может быть выведена из основных аксиом теории вероятностей, в частности из условной вероятности. Особенность теоремы Байеса заключается в том, что для её практического применения требуется большое количество расчетов, вычислений, поэтому байесовские оценки стали активно использовать только после революции в компьютерных и сетевых технологиях. (ru)
rdfs:label
  • Bayes' theorem (en)
  • مبرهنة بايز (ar)
  • Satz von Bayes (de)
  • Teorema de Bayes (es)
  • Théorème de Bayes (fr)
  • Teorema di Bayes (it)
  • ベイズの定理 (ja)
  • Theorema van Bayes (nl)
  • Twierdzenie Bayesa (pl)
  • Teorema de Bayes (pt)
  • Теорема Байеса (ru)
  • 贝叶斯定理 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of