OpenLink Software

About: Symmetric group

 Permalink

an Entity references as follows:

In abstract algebra, the symmetric group Sn on a finite set of n symbols is the group whose elements are all the permutation operations that can be performed on n distinct symbols, and whose group operation is the composition of such permutation operations, which are defined as bijective functions from the set of symbols to itself. Since there are n! (n factorial) possible permutation operations that can be performed on a tuple composed of n symbols, it follows that the order (the number of elements) of the symmetric group Sn is n!.

QRcode icon
QRcode image
Faceted Search & Find service v1.17_git21

Alternative Linked Data Documents: iSPARQL | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Copyright © 2009-2019 OpenLink Software