About: Weighted geometric mean     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In statistics, given a set of data, and corresponding weights, the weighted geometric mean is calculated as Note that if all the weights are equal, the weighted geometric mean is the same as the geometric mean. Weighted versions of other means can also be calculated. Probably the best known weighted mean is the weighted arithmetic mean, usually simply called the weighted mean. Another example of a weighted mean is the weighted harmonic mean. The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values.

AttributesValues
rdfs:label
  • Weighted geometric mean
  • Moyenne géométrique pondérée
  • Среднее геометрическое взвешенное
  • Média geométrica ponderada
rdfs:comment
  • In statistics, given a set of data, and corresponding weights, the weighted geometric mean is calculated as Note that if all the weights are equal, the weighted geometric mean is the same as the geometric mean. Weighted versions of other means can also be calculated. Probably the best known weighted mean is the weighted arithmetic mean, usually simply called the weighted mean. Another example of a weighted mean is the weighted harmonic mean. The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values.
  • Среднее геометрическое взвешенное набора вещественных чисел с вещественными весами определяется как В том случае, если все веса равны между собой, среднее геометрическое взвешенное равно среднему геометрическому.
  • En statistiques, si on considère l'ensemble de données suivant : X = { x1, x2, ..., xn} et les poids associés : W = { w1, w2, ..., wn} la moyenne géométrique pondérée se calcule de la manière suivante : Si tous les poids sont égaux, la moyenne géométrique pondérée est la même que la moyenne géométrique. Il existe également des versions pondérées des autres moyennes. La plus connue étant sans doute la moyenne arithmétique pondérée, appelée simplement moyenne pondérée. Un autre exemple de moyenne pondérée est la moyenne harmonique pondérée.
  • Em estatística, dado um conjunto de dados, e pesos correspondentes, a média geométrica ponderada é calculada da seguinte forma: Note que se todos os pesos são iguais, a média geométrica ponderada é igual à média geométrica. Outras médias podem ser calculadas de formas ponderadas também. Provavelmente a melhor média ponderada conhecida é a média aritmética ponderada, usualmente é simplesmente chamada de média ponderada. Outro exemplo de média ponderada é a média harmônica ponderada.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In statistics, given a set of data, and corresponding weights, the weighted geometric mean is calculated as Note that if all the weights are equal, the weighted geometric mean is the same as the geometric mean. Weighted versions of other means can also be calculated. Probably the best known weighted mean is the weighted arithmetic mean, usually simply called the weighted mean. Another example of a weighted mean is the weighted harmonic mean. The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values.
  • En statistiques, si on considère l'ensemble de données suivant : X = { x1, x2, ..., xn} et les poids associés : W = { w1, w2, ..., wn} la moyenne géométrique pondérée se calcule de la manière suivante : Si tous les poids sont égaux, la moyenne géométrique pondérée est la même que la moyenne géométrique. Il existe également des versions pondérées des autres moyennes. La plus connue étant sans doute la moyenne arithmétique pondérée, appelée simplement moyenne pondérée. Un autre exemple de moyenne pondérée est la moyenne harmonique pondérée. La deuxième expression ci-dessus montre que le logarithme de la moyenne géométrique pondérée est la moyenne arithmétique pondérée du logarithme des valeurs du jeu de données.
  • Среднее геометрическое взвешенное набора вещественных чисел с вещественными весами определяется как В том случае, если все веса равны между собой, среднее геометрическое взвешенное равно среднему геометрическому.
  • Em estatística, dado um conjunto de dados, e pesos correspondentes, a média geométrica ponderada é calculada da seguinte forma: Note que se todos os pesos são iguais, a média geométrica ponderada é igual à média geométrica. Outras médias podem ser calculadas de formas ponderadas também. Provavelmente a melhor média ponderada conhecida é a média aritmética ponderada, usualmente é simplesmente chamada de média ponderada. Outro exemplo de média ponderada é a média harmônica ponderada. A segunda forma acima ilustra que o logaritmo da média geométrica é a média aritmética ponderada do logaritmo dos valores individuais.
http://purl.org/voc/vrank#hasRank
is differentFrom of
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software