Attributes  Values 

rdf:type
 
rdfs:label
  Volterra series
 Serie di Volterra

rdfs:comment
  In matematica, lo sviluppo in serie di Volterra rappresenta un'espansione funzionale di un funzionale dinamico, non lineare e tempoinvariante, sviluppato insieme al teorema di Volterra, dal matematico Vito Volterra. Un sistema continuo tempoinvariante con ingresso ed uscita può essere espanso in serie di Volterra come: dove è chiamato kernel di Volterra di ordine n, e può essere visto come una generalizzazione della risposta impulsiva.
 The Volterra series is a model for nonlinear behavior similar to the Taylor series. It differs from the Taylor series in its ability to capture 'memory' effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of this system depends strictly on the input at that particular time. In the Volterra series the output of the nonlinear system depends on the input to the system at all other times. This provides the ability to capture the 'memory' effect of devices like capacitors and inductors.

sameAs
 
dct:subject
 
Wikipage page ID
 
Wikipage revision ID
 
Link from a Wikipage to another Wikipage
 
Link from a Wikipage to an external page
 
foaf:isPrimaryTopicOf
 
prov:wasDerivedFrom
 
has abstract
  In matematica, lo sviluppo in serie di Volterra rappresenta un'espansione funzionale di un funzionale dinamico, non lineare e tempoinvariante, sviluppato insieme al teorema di Volterra, dal matematico Vito Volterra. Un sistema continuo tempoinvariante con ingresso ed uscita può essere espanso in serie di Volterra come: dove è chiamato kernel di Volterra di ordine n, e può essere visto come una generalizzazione della risposta impulsiva.
 The Volterra series is a model for nonlinear behavior similar to the Taylor series. It differs from the Taylor series in its ability to capture 'memory' effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of this system depends strictly on the input at that particular time. In the Volterra series the output of the nonlinear system depends on the input to the system at all other times. This provides the ability to capture the 'memory' effect of devices like capacitors and inductors. It has been applied in the fields of medicine (biomedical engineering) and biology, especially neuroscience. It is also used in electrical engineering to model intermodulation distortion in many devices including power amplifiers and frequency mixers. Its main advantage lies in its generality: it can represent a wide range of systems. Thus it is sometimes considered a nonparametric model. In mathematics, a Volterra series denotes a functional expansion of a dynamic, nonlinear, timeinvariant functional. Volterra series are frequently used in system identification. The Volterra series, which is used to prove the Volterra theorem, is an infinite sum of multidimensional convolutional integrals.

http://purl.org/voc/vrank#hasRank
 
http://purl.org/li...ics/gold/hypernym
 
is Link from a Wikipage to another Wikipage
of  
is Wikipage redirect
of  
is Wikipage disambiguates
of  
is foaf:primaryTopic
of  