An Entity of Type : yago:PhysicalEntity100001930, within Data Space : dbpedia.org associated with source document(s)

In mathematics, a unique sink orientation is an orientation of the edges of a polytope such that, in every face of the polytope (including the whole polytope as one of the faces), there is exactly one vertex for which all adjoining edges are oriented inward (i.e. towards that vertex). If a polytope is given together with a linear objective function, and edges are oriented from vertices with smaller objective function values to vertices with larger objective values, the result is a unique sink orientation. Thus, unique sink orientations can be used to model linear programs as well as certain nonlinear programs such as the smallest circle problem.

AttributesValues
rdf:type
rdfs:label
• Unique sink orientation
rdfs:comment
• In mathematics, a unique sink orientation is an orientation of the edges of a polytope such that, in every face of the polytope (including the whole polytope as one of the faces), there is exactly one vertex for which all adjoining edges are oriented inward (i.e. towards that vertex). If a polytope is given together with a linear objective function, and edges are oriented from vertices with smaller objective function values to vertices with larger objective values, the result is a unique sink orientation. Thus, unique sink orientations can be used to model linear programs as well as certain nonlinear programs such as the smallest circle problem.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
• In mathematics, a unique sink orientation is an orientation of the edges of a polytope such that, in every face of the polytope (including the whole polytope as one of the faces), there is exactly one vertex for which all adjoining edges are oriented inward (i.e. towards that vertex). If a polytope is given together with a linear objective function, and edges are oriented from vertices with smaller objective function values to vertices with larger objective values, the result is a unique sink orientation. Thus, unique sink orientations can be used to model linear programs as well as certain nonlinear programs such as the smallest circle problem.
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)