About: Transfer operator     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDynamicalSystems, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTransfer_operator

In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. The transfer operator is sometimes called the Ruelle operator, after David Ruelle, or the Ruelle–Perron–Frobenius operator in reference to the applicability of the Frobenius–Perron theorem to the determination of the eigenvalues of the operator. The iterated function to be studied is a map for an arbitrary set . The transfer operator is defined as an operator acting on the space of functions as where .

AttributesValues
rdf:type
rdfs:label
  • Transfer operator
  • Opérateur de transfert
  • 転送作用素
rdfs:comment
  • 数学における転送作用素(てんそうさようそ、英: transfer operator)とは、反復写像の情報にある変換を加えるもので、力学系や統計力学、量子カオスやフラクタルの振る舞いを研究する上で頻繁に用いられる。 転送作用素はしばしば、ダヴィッド・ルエールの名にちなんでルエール作用素と呼ばれたり、作用素の固有値を決定するためのペロン=フロベニウスの定理への応用可能性からルエール=ペロン=フロベニウス作用素と呼ばれたりする。 今、考えられる反復函数は、任意の集合 に対する写像 とする。転送作用素は、函数 の空間上のある作用素 として次のように定義される。 ここで は補助的な評価函数である。 がヤコビアン を持つ場合には、 とされる。 上記のように定義される転送作用素は、測度論的な g の押し出しの点集合極限であることが示される。本質的に、転送作用素は可測空間のカテゴリー内の順像函手である。フロベニウス=ペロン作用素の左共役は、コープマン作用素や合成作用素と呼ばれる。
  • In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. The transfer operator is sometimes called the Ruelle operator, after David Ruelle, or the Ruelle–Perron–Frobenius operator in reference to the applicability of the Frobenius–Perron theorem to the determination of the eigenvalues of the operator. The iterated function to be studied is a map for an arbitrary set . The transfer operator is defined as an operator acting on the space of functions as where .
  • En mathématiques, l'opérateur de transfert encode l'information d'une application itérée et est fréquemment utilisé pour étudier le comportement des systèmes dynamiques, de la mécanique statistique, du chaos quantique et des fractales. L'opérateur de transfert est quelquefois appelé l'opérateur de Ruelle, en l'honneur de David Ruelle, ou l'opérateur de Ruelle-Perron-Frobenius faisant référence à l'applicabilité du théorème de Perron-Frobenius pour la détermination des valeurs propres de l'opérateur. La fonction itérée étudiée est une application d'un ensemble arbitraire comme où , alors .
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. The transfer operator is sometimes called the Ruelle operator, after David Ruelle, or the Ruelle–Perron–Frobenius operator in reference to the applicability of the Frobenius–Perron theorem to the determination of the eigenvalues of the operator. The iterated function to be studied is a map for an arbitrary set . The transfer operator is defined as an operator acting on the space of functions as where is an auxiliary valuation function. When has a Jacobian determinant , then is usually taken to be . The above definition of the transfer operator can be shown to be the point-set limit of the measure-theoretic pushforward of g: in essence, the transfer operator is the direct image functor in the category of measurable spaces. The left-adjoint of the Frobenius–Perron operator is the Koopman operator or composition operator.
  • En mathématiques, l'opérateur de transfert encode l'information d'une application itérée et est fréquemment utilisé pour étudier le comportement des systèmes dynamiques, de la mécanique statistique, du chaos quantique et des fractales. L'opérateur de transfert est quelquefois appelé l'opérateur de Ruelle, en l'honneur de David Ruelle, ou l'opérateur de Ruelle-Perron-Frobenius faisant référence à l'applicabilité du théorème de Perron-Frobenius pour la détermination des valeurs propres de l'opérateur. La fonction itérée étudiée est une application d'un ensemble arbitraire . L'opérateur de transfert est défini comme un opérateur agissant sur l'espace des fonctions comme où est une fonction auxiliaire de pondération. Lorsque possède un déterminant jacobien , alors est généralement choisie égale à . Certaines questions à propos de la forme et la nature de l'opérateur de transfert sont étudiées dans la théorie des opérateurs de composition (en).
  • 数学における転送作用素(てんそうさようそ、英: transfer operator)とは、反復写像の情報にある変換を加えるもので、力学系や統計力学、量子カオスやフラクタルの振る舞いを研究する上で頻繁に用いられる。 転送作用素はしばしば、ダヴィッド・ルエールの名にちなんでルエール作用素と呼ばれたり、作用素の固有値を決定するためのペロン=フロベニウスの定理への応用可能性からルエール=ペロン=フロベニウス作用素と呼ばれたりする。 今、考えられる反復函数は、任意の集合 に対する写像 とする。転送作用素は、函数 の空間上のある作用素 として次のように定義される。 ここで は補助的な評価函数である。 がヤコビアン を持つ場合には、 とされる。 上記のように定義される転送作用素は、測度論的な g の押し出しの点集合極限であることが示される。本質的に、転送作用素は可測空間のカテゴリー内の順像函手である。フロベニウス=ペロン作用素の左共役は、コープマン作用素や合成作用素と呼ばれる。
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software