About: Theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTheorem

In mathematics, a theorem is a statement that has been proved on the basis of previously established statements, such as other theorems—and generally accepted statements, such as axioms. A theorem is a logical consequence of the axioms. The proof of a mathematical theorem is a logical argument for the theorem statement given in accord with the rules of a deductive system. The proof of a theorem is often interpreted as justification of the truth of the theorem statement. In light of the requirement that theorems be proved, the concept of a theorem is fundamentally deductive, in contrast to the notion of a scientific law, which is experimental.

AttributesValues
rdf:type
rdfs:label
  • Theorem
  • مبرهنة
  • Satz (Mathematik)
  • Teorema
  • Théorème
  • Teorema
  • 定理
  • Stelling (wiskunde)
  • Twierdzenie
  • Teorema
  • Теорема
  • 定理
rdfs:comment
  • Ein Satz oder Theorem ist in der Mathematik eine widerspruchsfreie logische Aussage, die mittels eines Beweises als wahr erkannt, das heißt, aus Axiomen und bereits bekannten Sätzen hergeleitet werden kann. Ein Satz wird nach seiner Rolle, seiner Bedeutung oder seinem Kontext oft auch anders bezeichnet: 1. * Ein Lemma ist eine Aussage, die als Hilfssatz nur im Beweis anderer Sätze verwendet wird. 2. * Ein Korollar ist eine triviale Folgerung, die sich aus einem Satz oder einer Definition ohne großen Aufwand ergibt. 3. * Der Satz im engeren Sinn gibt eine wesentliche Erkenntnis wieder.
  • Un teorema è una proposizione che, a partire da condizioni iniziali arbitrariamente stabilite, trae delle conclusioni, dandone una dimostrazione. I teoremi svolgono un'importantissima funzione nella matematica, nella fisica e in generale in tutte le materie scientifiche. Teorema in greco significa: ciò che si guarda, su cui si specula (θεώρημα); sul piano etimologico ha la medesima derivazione di teoria (dal verbo θεωρέω theoréo, "guardo, osservo").
  • 定理(ていり、英: theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、英: lemma)あるいは補助定理(ほじょていり、英: helping theorem)、系(けい、英: corollary)、命題(めいだい、英: proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 前提条件:f(X) が複素数係数の定数でない多項式である 結論: f(X) は複素数の中に根を持つ。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。
  • 定理(英语:Theorem)是經過受邏輯限制的證明為真的陈述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些 是 ,某些 是 ,就不能算是定理)。 猜想是相信為真但未被證明的數學敘述,或者叫做命题,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。 如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。 在命題邏輯,所有已證明的敘述都稱為定理。
  • In mathematics, a theorem is a statement that has been proved on the basis of previously established statements, such as other theorems—and generally accepted statements, such as axioms. A theorem is a logical consequence of the axioms. The proof of a mathematical theorem is a logical argument for the theorem statement given in accord with the rules of a deductive system. The proof of a theorem is often interpreted as justification of the truth of the theorem statement. In light of the requirement that theorems be proved, the concept of a theorem is fundamentally deductive, in contrast to the notion of a scientific law, which is experimental.
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) المبرهنة (باللاتينية: theorema) قضية افتراضية (بمعنى جملة خبرية : تحتمل الصدق والكذب) قد تم البرهنة عليهاوإثباتها أو أنها مطلوب إثباتها، وذلك بناء على افتراضات صريحة (واضحة محددة). يعتبر برهنة المبرهنات إحدى أهم فعاليات الرياضيين. يجب عدم الخلط بين المبرهنة و« النظرية ».
  • Un teorema es una proposición que afirma una verdad demostrable. En matemáticas, es toda proposición que partiendo de un supuesto (hipótesis), afirma una verdad (tesis) no evidente por sí misma. Un teorema es una fórmula bien formada que puede ser demostrada dentro de un sistema formal, partiendo de axiomas u otros teoremas. Demostrar teoremas es un asunto central en la lógica matemática. Los teoremas también pueden ser expresados en lenguaje natural formalizado.
  • Un théorème est une affirmation (mathématique) qui peut être démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes. Un théorème est à distinguer d'une théorie. Un théorème a généralement : * des hypothèses de base, i.e. des conditions qui peuvent être énumérées dans le théorème ou décrites d'avance ; * une conclusion, i.e. une affirmation mathématique qui est vraie sous les conditions de base. Autre définition possible d'un théorème : « un énoncé dont on peut démontrer l’exactitude. »
  • In de wiskunde is een stelling (ook theorema, propositie of these) een bewering, die op basis van axioma's en eerder bewezen beweringen is bewezen. Om een stelling te bewijzen gebruikt men in de wiskunde de regels van de logica. De afleiding van een stelling wordt vaak geïnterpreteerd als een bewijs van de waarheid van de resulterende uitdrukking, maar, afhankelijk van de betekenis van de afleidingsregels kunnen verschillende deductieve systemen verschillende interpretaties opleveren. Stellingen hebben twee componenten, die respectievelijk de hypothesen en de conclusies worden genoemd. Het bewijs van een wiskundige stelling is een logische redenering, waaruit blijkt dat de conclusies een noodzakelijke gevolgtrekking op basis van de hypothesen zijn, in de zin dat als de hypothesen waar zijn
  • Twierdzenie to sformalizowana wypowiedź sądu, stosowana we wszystkich naukach ścisłych, składająca się z dwóch zbiorów zdań, które łączy relacja implikacji. Pierwszy zbiór zdań określa ściśle warunki dla których dane twierdzenie jest spełnione i nazywa się założeniem twierdzenia, a drugi zbiór zdań jest właściwym sądem, będącym istotną treścią wypowiadanego twierdzenia i zwany jest tezą twierdzenia. * założenie - dla każdego m należącego do zbioru liczb naturalnych i podzielnego przez sześć, * teza - m jest podzielne przez trzy.
  • Na matemática, um teorema é uma afirmação que pode ser provada como verdadeira, por meio de outras afirmações já demonstradas, como outros teoremas, juntamente com afirmações anteriormente aceitas, como axiomas. Prova é o processo de mostrar que um teorema está correto. O termo teorema foi introduzido por Euclides, em Elementos, para significar "afirmação que pode ser provada". Em grego, originalmente significava "espetáculo" ou "festa". Atualmente, é mais comum deixar o termo "teorema" apenas para certas afirmações que podem ser provadas e de grande "importância matemática", o que torna a definição um tanto subjetiva.
  • Теоре́ма (др.-греч. θεώρημα — «доказательство, вид; взгляд; представление, положение») — утверждение, выводимое в рамках рассматриваемой теории из множества аксиом посредством использования конечного множества правил вывода. Наиболее знаменитыми являются: теорема Пифагора, теорема Ферма.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3235 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software